Background
Clinical Features and Natural History of HBV Infection
HBV is a 42-nm DNA virus classified in the Hepadnaviridae family. The liver is the primary site of HBV replication. After a susceptible person is exposed, the virus enters the liver via the bloodstream; no evidence exists indicating that the virus replicates at mucosal surfaces. HBV infection can produce either asymptomatic or symptomatic infection. The average incubation period is 90 days (range: 60--150 days) from exposure to onset of jaundice and 60 days (range: 40--90 days) from exposure to onset of abnormal serum alanine aminotransferase (ALT) levels (17,18). The onset of acute disease is usually insidious. Infants and young children (aged <10 years) are typically asymptomatic (19). When present, clinical symptoms and signs might include anorexia, malaise, nausea, vomiting, abdominal pain, and jaundice. Extrahepatic manifestations of disease (e.g., skin rashes, arthralgias, and arthritis) also can occur (20). The fatality rate among persons with reported acute hepatitis B is 0.5%--1.5%, with highest rates in adults aged >60 years (21).
Although the consequences of acute hepatitis B can be severe, the majority of serious sequelae associated with HBV disease occur in persons who are chronically infected. Persons with chronic infection also serve as the major reservoir for continued HBV transmission. Chronic infection occurs in approximately 90% of infected infants, 30% of infected children aged <5 years, and <5% of infected persons aged >5 years, with continuing viral replication in the liver and persistent viremia (19,22--24). Primary infections also become chronic more frequently in immunosuppressed persons (e.g., hemodialysis patients and persons with human immunodeficiency virus [HIV] infection) (23,25,26). On the basis of data from follow-up studies of persons infected with HBV as infants or young children, approximately 25% of those with chronic infection die prematurely from cirrhosis or liver cancer; the majority remain asymptomatic until onset of cirrhosis or end-stage liver disease (27--29). No specific treatment exists for acute hepatitis B. Persons who have chronic HBV infection require medical evaluation and regular monitoring (30,31). Therapeutic agents approved by the Food and Drug Administration (FDA) for treatment of chronic hepatitis B can achieve sustained suppression of HBV replication and remission of liver disease in certain persons (31). Periodic screening with alfa fetoprotein or imaging studies has been demonstrated to enhance early detection of HCC (31). Chronically infected persons with HCC have been reported to have experienced long-term survival after resection or ablation of small HCCs, and persons who were screened had a substantial survival advantage compared with historic controls (31). Reinfection or reactivation of latent HBV infection has been reported among certain groups of immunosuppressed persons, including renal transplant recipients, HIV-infected patients, bone marrow transplant recipients, and patients receiving chemotherapy (32--35). The frequency with which this phenomenon occurs is unknown. Interpretation of Serologic Markers of HBV Infection
The antigens and antibodies associated with HBV infection include HBsAg and antibody to HBsAg (anti-HBs), hepatitis B core antigen (HBcAg) and antibody to HBcAg (anti-HBc), and hepatitis B e antigen (HBeAg) and antibody to HBeAg (anti-HBe). At least one serologic marker is present during the different phases of HBV infection (Table 1) (18,36). Serologic assays are commercially available for all markers except HBcAg because no free HBcAg circulates in blood. The presence of a confirmed HBsAg result is indicative of ongoing HBV infection. All HBsAg-positive persons should be considered infectious. In newly infected persons, HBsAg is the only serologic marker detected during the first 3--5 weeks after infection, and it persists for variable periods at very low levels. The average time from exposure to detection of HBsAg is 30 days (range: 6--60 days) (17,18). Highly sensitive single-sample nucleic acid tests can detect HBV DNA in the serum of an infected person 10--20 days before detection of HBsAg (37). Transient HBsAg positivity has been reported for up to 18 days after vaccination and is clinically insignificant (38,39). Anti-HBc appears at the onset of symptoms or liver test abnormalities in acute HBV infection and persists for life. Acute or recently acquired infection can be distinguished by the presence of the IgM class of anti-HBc, which is detected at the onset of acute hepatitis B and persists for up to 6 months if the disease resolves. In patients who develop chronic hepatitis B, IgM anti-HBc can persist at low levels during viral replication and can result in positive tests for IgM anti-HBc (40). In addition, false-positive IgM anti-HBc test results can occur. Because the positive predictive value is low in asymptomatic persons, for diagnosis of acute hepatitis B, testing for IgM anti-HBc should be limited to persons with clinical evidence of acute hepatitis or an epidemiologic link to a case. In persons who recover from HBV infection, HBsAg is eliminated from the blood, usually within 3--4 months, and anti-HBs develops during convalescence. The presence of anti-HBs typically indicates immunity from HBV infection. Infection or immunization with one genotype of HBV confers immunity to all genotypes. In addition, anti-HBs can be detected for several months after hepatitis B immune globulin (HBIG) administration. The majority of persons who recover from natural infection will be positive for both anti-HBs and anti-HBc, whereas persons who respond to hepatitis B vaccine have only anti-HBs. In persons who become chronically infected, HBsAg and anti-HBc persist, typically for life. HBsAg will become undetectable in approximately 0.5%--2% of chronically infected persons yearly, and anti-HBs will occur in the majority of these persons (41--44). In certain persons, the only HBV serologic marker detected in serum is anti-HBc. Isolated anti-HBc can occur after HBV infection among persons who have recovered but whose anti-HBs levels have waned or among persons in whom anti-HBs failed to occur. Persons in the latter category include those with circulating HBsAg levels not detectable by commercial assays. These persons are unlikely to be infectious except under circumstances in which they are the source for direct percutaneous exposure of susceptible recipients to substantial quantities of virus (e.g., through blood transfusion or following liver transplantation) (45). HBV DNA has been detected in the blood of <5% of persons with isolated anti-HBc (46). Typically, the frequency of isolated anti-HBc relates directly to the prevalence of HBV infection in the population. In populations with a high prevalence of HBV infection, isolated anti-HBc likely indicates previous infection, with loss of anti-HBs. For persons in populations with a low prevalence of HBV infection, an isolated anti-HBc result often represents a false-positive reaction. The majority of these persons have a primary anti-HBs response after a 3-dose series of hepatitis B vaccine (47,48). Infants who are born to HBsAg-positive mothers and who do not become infected might have detectable anti-HBc for <24 months after birth from passively transferred maternal antibody. HBeAg can be detected in the serum of persons with acute or chronic HBV infection. The presence of HBeAg correlates with viral replication and high levels of virus (i.e., high infectivity) (49,50). Anti-HBe correlates with the loss of replicating virus and with lower levels of virus, although reversion to HBeAg positivity has been observed (44). Epidemiology of HBV Infection
Transmission
HBV is transmitted by percutaneous (i.e., puncture through the skin) or mucosal (i.e., direct contact with mucous membranes) exposure to infectious blood or to body fluids that contain blood. All HBsAg-positive persons are infectious, but those who are also HBeAg positive are more infectious because their blood contains high titers of HBV (typically 107--109 virions/mL) (49,50). Although HBsAg has been detected in multiple body fluids, only serum, semen, and saliva have been demonstrated to be infectious (51,52). HBV is comparatively stable in the environment and remains viable for >7 days on environmental surfaces at room temperature (53). HBV at concentrations of 102--3 virions/mL can be present on environmental surfaces in the absence of any visible blood and still cause transmission (53,54). For infants and children, the two primary sources of HBV infection are perinatal transmission from infected mothers and horizontal transmission from infected household contacts. Adolescents are at risk for HBV infection primarily through high-risk sexual activity (i.e., sex with more than one partner and male sexual activity with other males) and injection-drug use (21). Transmission of HBV via transfusion of blood and plasma-derived products is rare because of donor screening for HBsAg and viral inactivation procedures. For a newborn infant whose mother is positive for both HBsAg and HBeAg, the risk for chronic HBV infection is 70%--90%
by age 6 months in the absence of postexposure immunoprophylaxis (55--57). For infants of women who are HBsAg positive but HBeAg negative, the risk for chronic infection is <10% in the absence of postexposure immunoprophylaxis (58--60). Rare cases of fulminant hepatitis B among perinatally infected infants also have been reported (61,62). Studies suggest that breastfeeding by an HBsAg-positive mother does not increase the risk for acquisition of HBV infection in the infant (63). Children who are not infected at birth remain at risk from long-term interpersonal contact with their infected mothers. In one study, 38% of infants who were born to HBsAg-positive mothers and who were not infected perinatally became infected by age 4 years (64). In addition, children living with any chronically infected persons are at risk for becoming infected through percutaneous or mucosal exposures to blood or infectious body fluids (e.g., sharing a toothbrush, contact with exudates from dermatologic lesions, contact with HBsAg-contaminated surfaces). HBV transmission rates to susceptible household contacts of chronically infected persons have varied (range: 14%--60%) (65,66). High rates of infection also have been reported among unvaccinated long-term residents of institutions for the mentally handicapped (67,68), and, in rare instances, person-to-person transmission has been reported in child care settings (69,70). Incidence
During 1990--2004, overall incidence of reported acute hepatitis B declined 75%, from 8.5 to 2.1 per 100,000 population. The most dramatic declines occurred in the cohort of children to whom recommendations for routine infant and adolescent vaccination have applied. Incidence among children aged <12 years and adolescents aged 12--19 years declined 94%, from 1.1 to 0.36 and 6.1 to 2.8 per 100,000 population, respectively (Figure 2). Since implementation of routine childhood immunization, an estimated 6,800 perinatal infections and an additional 18,700 infections during the first 10 years of life have been prevented annually in the United States (71). Although infections in infants and children aged <10 years represented <10% of all HBV infections before implementation of childhood immunization programs, childhood infections resulted in an estimated 30%--40% of the chronic HBV infections among persons who acquired their infections in the United States (1). In two population-based studies conducted among Asian/Pacific Islander children who were born in the United States before perinatal hepatitis B prevention programs were widely implemented, 61%--66% of the chronic HBV infections occurred in children born to HBsAg-negative mothers (72,73). A substantial proportion of these chronic infections would not have been prevented by a selective program of identification and immunization of only infants born to HBsAg-positive mothers. In addition to declines in incidence among all age groups, racial disparities in hepatitis B incidence among children have been substantially reduced (Figure 3). The reduction of the disparity between Asian/Pacific Islander and other children is consistent with recent observations noting a decline in seroprevalence of HBV infection after successful implementation of routine hepatitis B vaccination among Asians who have recently immigrated to the United States (74,75). However, as hepatitis B incidence has declined among U.S.-born children, unvaccinated foreign-born children account for a high proportion of infections. During 2001--2002, of 19
children born after 1991 in whom acute hepatitis B had been verified, eight (42%) were foreign born (76). Prevalence
In the U.S. population, the overall age-adjusted prevalence of HBV infection (including persons with chronic infection and those with previous infection) was 4.9% in the third National Health and Nutrition Examination Survey (NHANES III, 1988--1994) (77). Foreign-born persons (particularly Asian/Pacific Islanders) who have emigrated from countries in which HBV is endemic (Figure 1 and Box 2) contribute disproportionately to the burden of chronic HBV infection in the United States. The prevalence of chronic HBV infection among foreign-born persons immigrating to the United States from Central and Southeast Asia, the Middle East, and Africa varies (range: 5%--15%) and reflects the patterns of HBV infection in the countries and regions of origin for these persons. During 1994--2003, approximately 40,000 immigrants with chronic HBV infection were admitted annually to the United States for permanent residence (78; CDC, unpublished data, 2005). |