15/10/02说明:此前论坛服务器频繁出错,现已更换服务器。今后论坛继续数据库备份,不备份上传附件。

肝胆相照论坛

 

 

肝胆相照论坛 论坛 学术讨论& HBV English 通过转移一个T细胞驯服肿瘤
查看: 1186|回复: 5
go

通过转移一个T细胞驯服肿瘤 [复制链接]

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

1
发表于 2018-6-17 14:18 |只看该作者 |倒序浏览 |打印
                NEWS AND VIEWS                                            30 May 2018                    
               
                                                Tumour tamed by transfer of one T cell                                                    The T cells of the immune system can be engineered to target a tumour, but why some people respond better than others to such therapy is unclear. One patient’s striking response to treatment now offers some clues.               
                                                                                                                [url=]
[/url][url=]Marcela V. Maus[/url]                                            
            

               
                        
PDF version                    
               
                                                            The use of genetically engineered immune cells to target tumours is one of the most exciting current developments in cancer treatment. In this approach, T cells are taken from a patient and modified in vitro by inserting an engineered version of a gene that encodes a receptor protein. The receptor, known as a chimaeric antigen receptors (CAR), directs the engineered cell, called a CAR T cell, to the patient’s tumour when the cell is transferred back into the body. This therapy can be highly effective for tumours that express the protein CD19, such as B-cell acute leukaemias1,2 and large-cell lymphomas3,4. However, some people do not respond to CAR T cells, and efforts to optimize this therapy are ongoing. In a paper in Nature, Fraietta et al.5 report the fortuitous identification of a gene that positively affected one person’s response to treatment with CAR T cells.

  Read the paper: Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells Therapies involving engineered immune cells use viral vectors based on retroviruses or lentiviruses to insert a DNA sequence, such as one encoding a CAR, into a person’s T cells. However, given that there is no control over where the sequence inserts into the genome, it is possible that the engineered gene could insert at a location that disrupts another, important gene. In the early 2000s, a clinical trial6 enrolled people with immunodeficiencies arising from the lack of a functional copy of a particular immune gene. The trial used viral vectors to insert a wild-type copy of this gene into their stem cells. Unfortunately, however, several people developed uncontrolled T-cell proliferation that evolved into T-cell leukaemia. This event was linked7 to the gene inserting within the sequence of the LMO2 gene, disrupting the normal regulation of LMO2.
The pattern of genomic integration sites for various viral vectors has been found to be specific for a given combination of vector and cell type8. In a study of people who had T cells modified using retroviral vectors, the integration events were not implicated as the cause of any cancers9. Lentiviral vectors integrate randomly into the genome but tend to preferentially locate at sites of transcriptionally active genes10. Although random integration is generally thought to be safe, any disruption of the genome nevertheless confers a risk of unwanted consequences.
The effectiveness of treatments involving CAR T cells has been linked to the persistence and proliferation of the CAR T cells in the person’s body, and this can be affected by factors including the disease subtype, the molecular design of the CAR used, and even the manufacturing process1. Fraietta et al. report the unusual response of a person in a clinical trial whose CAR T cells targeted a CD19-expressing tumour called chronic lymphocytic leukaemia. In this case, disruption of the gene into which the CAR sequence had been inserted had a direct and beneficial effect on the clinical outcome.
The patient began to show a noticeable response to treatment two months after receiving a second dose of CAR T cells. Tumour regression normally occurs within a month if treatment is successful, so the authors investigated the reason for the delay in this case. Crucially, they analysed the nature of the CAR T cells at peak concentrations in the blood during tumour regression. Fraietta and colleagues made the surprising observation that these CAR T cells consisted almost exclusively of a clonal population descended from a single cell.
This single cell’s progeny divided over time until the cellular descendants reached a tipping point that eliminated the entire tumour. It is remarkable that the minimally effective and curative dose of this form of immunotherapy can be the introduction of just one cell. This raised the question of why introducing the CAR sequence to this specific T cell caused such an effective antitumour response.
In this clonal population of T cells, the CAR sequence had inserted into a copy of the TET2 gene, preventing the gene from encoding a functional protein. The patient’s other copy of TET2 had a mutation, so insertion of the CAR sequence generated T cells that lacked TET2 protein. TET2 is an enzyme, also called methylcytosine dioxygenase, that catalyses a hydroxylation reaction that alters methyl groups attached to DNA (Fig. 1). Such modifications of DNA or its associated proteins are known as epigenetic modifications, and they can affect gene expression in some cases. When Fraietta and colleagues compared the patient’s T cells that lacked the CAR insertion with those into which the CAR had been inserted, the overall epigenetic profile was similar. However, differences in the structure of the DNA–protein complex called chromatin were observed in genes involved in T-cell function, including CD28, ICOS and the gene that encodes interferon-γ.
         

Figure 1 | Tumour targeting by CAR T cells. If a patient’s T cells are engineered to express a version of an immune-cell receptor called a CAR, the cells can target tumour cells that express a specific protein, such as CD19. However, not everyone responds to this treatment. Fraietta et al.5 report that one patient’s response to CAR T-cell treatment has revealed a gene that can affect therapy success. The patient had a mutation in one of their copies of the TET2 gene. TET2 encodes an enzyme that converts methyl (CH3) groups attached to DNA into hydroxymethyl (CH2OH) groups. This type of change is known as an epigenetic modification. When a CAR-encoding sequence was introduced into the patient’s T cells using a viral vector, in one cell the CAR sequence inserted into the patient’s non-mutated copy of TET2 and disrupted the gene, thereby generating a cell that lacked any functional copies of TET2. The clonal descendants of this cell eradicated the patient’s tumour. The lack of TET2 altered the cell’s profile of epigenetic modifications, which can affect gene expression. This TET2 deficiency was associated with an increase in the expression of tumour-killing factors such as the enzyme granzyme, as well as entry into a cellular state called the central memory state, which stops the cells from entering a dysfunctional mode called exhaustion.

   
TET2 mutations have previously been associated with clonal blood-cell alterations linked to a risk of disease or blood cancers (a phenomenon known as clonal haematopoiesis)11. However, the patient’s T cells that lacked TET2 did not give rise to either aberrant T-cell proliferation or cancer. After tumour elimination, the number of CAR T cells decreased appropriately, replicating the normal pattern for a T-cell population (increasing in response to its target and declining after target elimination).
The authors used genetic engineering to remove TET2 in human T cells in vitro. Analysis of these cells revealed a connection between the absence of TET2 and the promotion and maintenance of T cells in a cellular state known as a central memory state. This state helps to prevent the cells from entering a dysfunctional mode called exhaustion, which is linked to ineffective tumour targeting by T cells. The absence of TET2 was also linked to an increase in long-term T-cell memory.
Fraietta et al. observed that human T cells lacking TET2 made fewer immune signalling molecules called cytokines than did cells that had TET2. Disruption of TET2 was also linked to an increase in the level of the enzymes perforin and granzyme, which are components of the tumour-killing machinery of T cells. These roles of TET2 in T-cell function and memory were previously unknown.
These remarkable findings might suggest that targeting TET2 in human T cells through drug-mediated inhibition or gene-editing techniques could increase the effectiveness of CAR T-cell treatment for other patients. If so, perhaps the dose of CAR T cells needed might be only a few cells, rather than the usual 50 million to 500 million cells. This would shorten the waiting time for CAR T cells and lower the substantial manufacturing costs. However, given the known associations of TET2 mutations with certain disease states, this approach might run the risk of generating a malignancy.
Enhancing CAR T-cell function is an area of active research, and other options to achieve this goal have been proposed. Inserting a CAR sequence at the genomic location where the natural version of the gene resides enhances the activity and persistence of CAR T cells in a mouse model12. Other groups have reported progress13 in making CAR T cells resistant to inhibitory checkpoint-signalling pathways that hinder T-cell function.
Will one of the many possible approaches be preferable to the others? Unfortunately, animal studies are not always predictive of results in humans, so clinical trials are the only way to answer this definitively. The good news is that it seems likely that many of these approaches will enhance efficacy and safety, so there is hope that the use of CAR T cells to treat cancer will become even more successful in the years to come.
               
                    Nature 558, 193-195 (2018)
                    doi: 10.1038/d41586-018-05251-5

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

2
发表于 2018-6-17 14:22 |只看该作者
新闻和观点2018年5月30日
通过转移一个T细胞驯服肿瘤
免疫系统的T细胞可以被设计为靶向肿瘤,但为什么有些人的反应比其他人更好,因此这种疗法尚不清楚。现在,一位患者对治疗的惊人反应提供了一些线索。
马塞拉五毛斯

PDF版本

使用基因工程的免疫细胞靶向肿瘤是癌症治疗中最令人兴奋的当前发展之一。在这种方法中,T细胞取自患者,并通过插入工程化版本的编码受体蛋白的基因进行体外修饰。当细胞转移回体内时,称为嵌合抗原受体(CAR)的受体将称为CAR T细胞的工程细胞引导至患者的肿瘤。该疗法对于表达蛋白质CD19的肿瘤如B细胞急性白血病1,2和大细胞淋巴瘤3,4是高度有效的。但是,有些人对CAR T细胞没有反应,而且正在努力优化这种疗法。在自然界的一篇论文中,Fraietta等[5]报道偶然鉴定一个基因,这个基因正面影响了一个人对CAR T细胞治疗的反应。

阅读论文:TET2的破坏促进CD19靶向的T细胞的治疗功效

涉及工程化免疫细胞的疗法使用基于逆转录病毒或慢病毒的病毒载体将DNA序列(例如编码CAR的DNA序列)插入人T细胞。然而,鉴于对序列插入基因组的位置没有控制,工程化基因可能插入到破坏另一个重要基因的位置。在21世纪初,一项临床试验[6]招募了因缺乏特定免疫基因功能性拷贝而产生免疫缺陷的人。该试验使用病毒载体将该基因的野生型拷贝插入其干细胞中。然而,不幸的是,一些人发展了不受控制的T细胞增殖,进化为T细胞白血病。该事件与LMO2基因序列内插入的基因连锁,破坏LMO2的正常调节。

已经发现各种病毒载体的基因组整合位点的模式对载体和细胞类型的给定组合是特异性的8。在对使用逆转录病毒载体修饰过T细胞的人进行的一项研究中,整合事件并不牵涉任何癌症的病因9。慢病毒载体随机整合到基因组中,但倾向于优先位于转录活性基因的位点10。尽管随机整合通常被认为是安全的,但是基因组的任何中断都会带来不必要的后果。

涉及CAR T细胞的治疗的有效性与CAR T细胞在人体内的持续存在和增殖有关,并且这可能受包括疾病亚型,所用CAR的分子设计,甚至制造过程1。 Fraietta等人报告一个人在CAR T细胞靶向表达CD19的肿瘤称为慢性淋巴细胞性白血病的临床试验中的不寻常反应。在这种情况下,插入CAR序列的基因的破坏对临床结果具有直接和有益的影响。

接受第二剂CAR T细胞两个月后,患者开始显示对治疗的显着反应。如果治疗成功,肿瘤消退通常会在一个月内发生,因此作者研究了在这种情况下延迟的原因。最重要的是,他们分析了肿瘤消退期间血液峰浓度时CAR T细胞的性质。 Fraietta及其同事做出了令人惊讶的观察,即这些CAR T细胞几乎完全由来自单细胞的克隆群体组成。

这个单细胞的后代随着时间的推移分裂,直到细胞的后代达到消除整个肿瘤的临界点。值得注意的是,这种形式的免疫疗法的最低有效和治愈剂量可以是仅引入一种细胞。这提出了为什么将CAR序列引入该特定T细胞引起如此有效的抗肿瘤反应的问题。
在这个克隆的T细胞群中,CAR序列已经插入到TET2基因的拷贝中,阻止该基因编码功能蛋白。患者的另一份TET2具有突变,因此插入CAR序列产生缺乏TET2蛋白的T细胞。 TET2是一种酶,也称为甲基胞嘧啶双加氧酶,催化羟基化反应,改变连接在DNA上的甲基(图1)。 DNA或其相关蛋白质的这种修饰被称为表观遗传修饰,并且在某些情况下它们可以影响基因表达。当Fraietta及其同事将缺乏CAR插入的患者T细胞与插入CAR的患者相比较时,整体表观遗传学特征相似。然而,在涉及T细胞功能的基因(包括CD28,ICOS和编码干扰素-γ的基因)中观察到称为染色质的DNA-蛋白质复合物的结构差异。

图1 | CAR T细胞靶向肿瘤。如果病人的T细胞被设计为表达一种称为CAR的免疫细胞受体,则细胞可以靶向表达特定蛋白质如CD19的肿瘤细胞。但是,并非所有人都对这种治疗方法有所反应Fraietta等[5]报道,一名患者对CAR T细胞治疗的反应显示可影响治疗成功的基因。患者在其TET2基因的一个拷贝中有突变。 TET2编码将连接到DNA上的甲基(CH3)基团转化成羟甲基(CH2OH)基团的酶。这种改变被称为表观遗传修饰。当使用病毒载体将CAR-编码序列导入患者的T细胞时,在一个细胞中,将CAR序列插入到患者的TET2的非突变拷贝中并破坏该基因,由此产生缺乏TET2的任何功能性拷贝的细胞。该细胞的无性系后代根除了患者的肿瘤。缺乏TET2改变了细胞表观遗传修饰的特征,这可能影响基因表达。这种TET2缺陷与肿瘤杀伤因子如酶粒酶的表达增加以及进入称为中枢记忆状态的细胞状态有关,后者阻止细胞进入称为耗竭的功能失调模式。

先前TET2突变与克隆血细胞改变有关,与疾病或血癌的风险有关(这种现象称为克隆性造血作用)11。然而,缺乏TET2的患者T细胞不会引起异常T细胞增殖或癌症。消除肿瘤后,CAR T细胞数量适当减少,复制T细胞群体的正常模式(响应于其目标而增加,并在目标消除后下降)。

作者使用基因工程在体外去除人类T细胞中的TET2。对这些细胞的分析揭示了TET2的缺失与T细胞在称为中央记忆状态的细胞状态中的促进和维持之间的联系。这种状态有助于防止细胞进入称为疲惫的功能失调模式,这种模式与T细胞无效的肿瘤靶向有关。 TET2的缺失也与长期T细胞记忆增加有关。

Fraietta等人观察到缺乏TET2的人T细胞比具有TET2的细胞产生更少的称为细胞因子的免疫信号分子。 TET2的破坏还与作为T细胞杀肿瘤机制组分的酶穿孔素和粒酶的水平增加有关。以前TET2在T细胞功能和记忆中的这些作用是未知的。

这些显着的发现可能表明,通过药物介导的抑制或基因编辑技术靶向人T细胞中的TET2可以增加CAR T细胞治疗对其他患者的有效性。如果是这样,可能所需的CAR T细胞的剂量可能只有几个细胞,而不是通常的5千万到5亿细胞。这将缩短CAR T电池的等待时间并降低实质性制造成本。然而,鉴于TET2突变与某些疾病状态的已知关联,该方法可能会产生恶性肿瘤的风险。

提高CAR T细胞功能是一个积极研究的领域,并且已经提出了其他实现该目标的方案。在自然形式的基因所在的基因组位置处插入CAR序列可增强小鼠模型中CAR T细胞的活性和持久性[12]。其他研究组报道了使CAR T细胞对阻碍T细胞功能的抑制性关卡信号通路具有抗性的进展13。

许多可能的方法之一会比其他方法更可取吗? 不幸的是,动物研究并不总是能够预测人类的结果,因此临床试验是唯一明确回答这个问题的方法。 好消息是,这些方法很可能会提高疗效和安全性,因此希望CAR T细胞治疗癌症在未来几年会更加成功。

Nature 558,193-195(2018)
doi:10.1038 / d41586-018-05251-5

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

3
发表于 2018-6-17 14:22 |只看该作者

Rank: 6Rank: 6

现金
2185 元 
精华
帖子
882 
注册时间
2017-4-21 
最后登录
2021-4-15 
4
发表于 2018-6-17 21:56 |只看该作者
CAR T细胞功能是一个积极研究的领域,并且已经提出了其他实现该目标的方案。

未来医学发展的方向,针对不同的病毒,进行T细胞编程和改变,消灭相应的病毒
===========
心怀希望,那么就永远有希望
TAF交流讨论QQ 2群:580817223

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

5
发表于 2018-6-17 22:25 |只看该作者
回复 antiHBVren 的帖子

如何传递基因来产生TCR仍然是一个问题.

Rank: 6Rank: 6

现金
2185 元 
精华
帖子
882 
注册时间
2017-4-21 
最后登录
2021-4-15 
6
发表于 2018-6-18 11:50 |只看该作者
回复 StephenW 的帖子

嗯,是的。
但是随着基因工程的不断深入,应该只是个时间问题
===========
心怀希望,那么就永远有希望
TAF交流讨论QQ 2群:580817223
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册

肝胆相照论坛

GMT+8, 2024-11-16 02:34 , Processed in 0.014370 second(s), 11 queries , Gzip On.

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.