15/10/02说明:此前论坛服务器频繁出错,现已更换服务器。今后论坛继续数据库备份,不备份上传附件。

肝胆相照论坛

 

 

肝胆相照论坛 论坛 学术讨论& HBV English 随着专家测试乙肝病毒,器官 - 芯片技术进入下一阶段 ...
查看: 590|回复: 4
go

随着专家测试乙肝病毒,器官 - 芯片技术进入下一阶段 [复制链接]

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

1
发表于 2018-2-15 15:46 |只看该作者 |倒序浏览 |打印
Organ-on-chip technology enters next stage as experts test hepatitis B virus

Date:
    February 14, 2018
Source:
    Imperial College London
Summary:
    Scientists are testing how pathogens interact with artificial human organs.
Share:

FULL STORY
Primary hepatocytes grown in 3-D microfluidic "liver-on-a-chip" platform following infection with hepatitis B virus.
Credit: Marcus Dorner/Imperial College London

Scientists at Imperial College London have become the first in the world to test how pathogens interact with artificial human organs.

Artificial human organs, or organ-on-chip technologies, simulate a whole organ's cell make up and physiology. They act as alternatives to animal models in drug safety testing, but until now they have not been used to test how infectious diseases interact with the organs.

Now, researchers from Imperial are using this technology to determine how pathogens interact with artificial organs. They hope it will help us to better understand the resulting disease and develop new treatments.

In particular, the team used an artificial liver -- originally developed at MIT, the University of Oxford, and biotechnology company CN Bio Innovations -- and tested its response to hepatitis B virus infection.

Dr Marcus Dorner, lead author from Imperial's School of Public Health, said: "This is the first time that organ-on-a-chip technology has been used to test viral infections. Our work represents the next frontier in the use of this technology. We hope it will ultimately drive down the cost and time associated with clinical trials, which will benefit patients in the long run."

Hepatitis B virus is currently incurable, and affects over 257 million people worldwide. Development of a cure has been slow because there is no model system in which to test potential therapies.

However, the Imperial team showed that the liver-on-a-chip technology could be infected with hepatitis B virus at physiological levels and had similar biological responses to the virus as a real human liver, including immune cell activation and other markers of infection. In particular, this platform uncovered the virus's intricate means of evading inbuilt immune responses -- a finding which could be exploited for future drug development.

Although this technology is in its early stages, the researchers suggest that it might eventually enable patients to have access to new types of personalised medicine. Rather than using generic cells lines, doctors in the future could potentially use cells from an actual patient and test how they would react to certain drugs for their infection, which may make treatments more targeted and effective.

Organs-on-chips house live human cells on scaffolds that are physiologically, mechanically, and structurally similar to the emulated organ. Drugs or viruses are passed through the cells via tubes that simulate blood flow through the body. The living cells used in tests last much longer on the chip than in traditional laboratory methods, and require lower infection doses compared to traditionally used model systems.

Hepatitis B is very infectious and causes liver cancer and cirrhosis. Thus, the researchers say, it was the best virus to use for the first test as its interactions with the immune system and liver cells are complex, but with devastating consequences for the tissues.

Dr Dorner said: "Once we begin testing viruses and bacteria on other artificial organs, the next steps could be to test drug interaction with the pathogens within the organ-on-chip environment."

Other organs-on-chips currently in use include the heart, kidneys, and lungs. The authors say using these artificial organs for human pathogens could help researchers to better understand the mechanisms of infectious disease, and to observe how the virus and cells in the organ interact. This could lead to new drugs and treatments for a number of diseases affecting different organs in the future.

Story Source:

Materials provided by Imperial College London. Note: Content may be edited for style and length.

Journal Reference:

    A. M. Ortega-Prieto, J. K. Skelton, S. N. Wai, E. Large, M. Lussignol, G. Vizcay-Barrena, D. Hughes, R. A. Fleck, M. Thursz, M. T. Catanese, M. Dorner. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nature Communications, 2018; 9 (1) DOI: 10.1038/s41467-018-02969-8

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

2
发表于 2018-2-15 15:46 |只看该作者
随着专家测试乙肝病毒,器官 - 芯片技术进入下一阶段

日期:
2018年2月14日
资源:
伦敦帝国学院
概要:
科学家正在测试病原体如何与人造器官相互作用。
分享:

完整的故事
在乙型肝炎病毒感染后,在3-D微流体“芯片上肝脏”平台上生长的原代肝细胞。
学分:马库斯Dorner /伦敦帝国学院

伦敦帝国理工学院的科学家们已经成为世界上第一个测试病原体如何与人造器官相互作用的科学家。

人造器官或片上器官技术模拟整个器官的细胞构成和生理机能。它们在药物安全性测试中用作动物模型的替代品,但直到现在它们还没有用于测试与器官相互作用的传染性疾病。

现在,帝国研究人员正在利用这项技术来确定病原体与人造器官的相互作用。他们希望它能帮助我们更好地了解由此产生的疾病并开发新的治疗方法。

特别是,该团队使用人造肝,最初是在麻省理工学院,牛津大学和生物技术公司CN Bio Innovations开发的,并测试了它对乙型肝炎病毒感染的反应。

帝国公共卫生学院主要作者Marcus Dorner博士说:“这是第一次使用器官对芯片技术来测试病毒感染,我们的工作代表了使用这种技术的下一个前沿我们希望它能最终降低与临床试验相关的成本和时间,从长远来看这将有利于患者。“

乙型肝炎病毒目前无法治愈,并影响全球超过2.57亿人。由于没有用于测试潜在疗法的模型系统,发展治疗已经很缓慢。

然而,帝国团队表明肝片芯片技术可能在生理水平上感染乙型肝炎病毒,并且对病毒具有与真人肝脏类似的生物学反应,包括免疫细胞活化和其他感染标记。特别是,该平台揭示了病毒逃避内部免疫反应的复杂手段 - 这一发现可能为未来的药物开发所利用。

未来医生可能会使用来自实际患者的细胞,并测试他们如何对某些药物的感染作出反应,这可能会使治疗更有针对性和更有效。

芯片上的器官将人体活细胞放置在与模拟器官生理,机械和结构相似的脚手架上。药物或病毒通过模拟血液流过身体的管穿过细胞。与传统实验室方法相比,用于测试的活细胞在芯片上持续时间更长,并且与传统使用的模型系统相比,需要更低的感染剂量。

因此,研究人员说,这是用于第一次测试的最好的病毒,因为它与免疫系统和肝细胞的相互作用是复杂的,但对组织具有破坏性后果。

Dorner博士说:“一旦我们开始在其他人造器官上检测病毒和细菌,接下来的步骤可能是药物与芯片内环境中的病原体相互作用。”

目前正在使用的其他器官包括心脏,肾脏和肺。作者说,使用人造器官作为人类病原体可以帮助研究人员更好地理解传染病的机制,并观察病毒和细胞。这可能会导致新的药物和治疗方法,影响将来不同器官的许多疾病。

故事来源:

材料由伦敦帝国学院提供。注意:内容可能会根据样式和长度进行编辑。

期刊参考:

AM Ortega-Prieto,JK Skelton,SN Wai,E. Large,M. Lussignol,G. Vizcay-Barrena,D. Hughes,RA Fleck,M. Thursz,MT Catanese,M. Dorner。 3D微流体肝脏培养物作为乙型肝炎病毒感染的生理学临床前工具。 Nature Communications,2018; 9(1)DOI:10.1038 / s41467-018-02969-8

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

3
发表于 2018-2-15 17:12 |只看该作者
3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection

    A. M. Ortega-Prieto, J. K. Skelton, S. N. Wai, E. Large, M. Lussignol, G. Vizcay-Barrena, D. Hughes, R. A. Fleck, M. Thursz, M. T. Catanese & M. Dorner

    Nature Communicationsvolume 9, Article number: 682 (2018)
    doi:10.1038/s41467-018-02969-8
    Download Citation
        Hepatitis B virusTissue engineering

Received:
    14 March 2016
Accepted:
    09 January 2018
Published online:
    14 February 2018

Abstract

With more than 240 million people infected, hepatitis B virus (HBV) is a major health concern. The inability to mimic the complexity of the liver using cell lines and regular primary human hepatocyte (PHH) cultures pose significant limitations for studying host/pathogen interactions. Here, we describe a 3D microfluidic PHH system permissive to HBV infection, which can be maintained for at least 40 days. This system enables the recapitulation of all steps of the HBV life cycle, including the replication of patient-derived HBV and the maintenance of HBV cccDNA. We show that innate immune and cytokine responses following infection with HBV mimic those observed in HBV-infected patients, thus allowing the dissection of pathways important for immune evasion and validation of biomarkers. Additionally, we demonstrate that the co-culture of PHH with other non-parenchymal cells enables the identification of the cellular origin of immune effectors, thus providing a valuable preclinical platform for HBV research.

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

4
发表于 2018-2-15 17:12 |只看该作者
3D微流体肝脏培养物作为乙型肝炎病毒感染的生理学临床前工具

    A. M. Ortega-Prieto,J. K. Skelton,S. N. Wai,E. Large,M. Lussignol,G. Vizcay-Barrena,D. Hughes,R. A. Fleck,M. Thursz,M. T. Catanese&M. Dorner

    Nature Communications第9卷,文章编号:682(2018)
    DOI:10.1038 / s41467-018-02969-8
    下载引文
        乙型肝炎病毒组织工程

收稿日期:
    2016年3月14日
公认:
    2018年1月9日
在线发布:
    2018年2月14日

抽象

有超过2.4亿人感染乙型肝炎病毒(HBV)是一个主要的健康问题。使用细胞系和常规原代人肝细胞(PHH)培养物无法模仿肝脏的复杂性对研究宿主/病原体相互作用造成显着限制。在这里,我们描述了一个允许HBV感染的3D微流体PHH系统,可以维持至少40天。该系统能够重新概括HBV生命周期的所有步骤,包括复制患者来源的HBV和维持HBV cccDNA。我们表明,乙型肝炎病毒感染后的先天性免疫和细胞因子反应模仿在HBV感染患者中观察到的那些,因此允许解剖对免疫逃避和生物标记验证重要的途径。此外,我们证明PHH与其他非实质细胞的共同培养能够鉴定免疫效应子的细胞来源,从而为HBV研究提供了宝贵的临床前平台。
已有 1 人评分现金 收起 理由
MP4 + 2

总评分: 现金 + 2   查看全部评分

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

5
发表于 2018-2-15 17:12 |只看该作者
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册

肝胆相照论坛

GMT+8, 2024-11-10 19:19 , Processed in 0.090125 second(s), 12 queries , Gzip On.

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.