- 现金
- 62111 元
- 精华
- 26
- 帖子
- 30437
- 注册时间
- 2009-10-5
- 最后登录
- 2022-12-28
|
J Virol. 2017 Dec 6. pii: JVI.01416-17. doi: 10.1128/JVI.01416-17. [Epub ahead of print]
Nucleic acid polymers are active against Hepatitis Delta Virus infection in vitro.Beilstein F1, Blanchet M2, Vaillant A3, Sureau C4.
Author information
1Institut National de la Transfusion Sanguine (INTS), CNRS-INSERM U1134, Paris, France.2Replicor Inc. Montreal, Canada.3Replicor Inc. Montreal, Canada [email protected] [email protected].4Institut National de la Transfusion Sanguine (INTS), CNRS-INSERM U1134, Paris, France [email protected] [email protected].
AbstractIn this study, an in vitro infection model for the hepatitis delta virus (HDV) was used to evaluate the antiviral effects of phosphorothioate nucleic acid polymers (NAPs) and investigate their mechanism of action. The results show that NAPs inhibit HDV infection at less than 4 micromolar concentrations in cultures of differentiated human hepatoma cells. NAPs were shown to be active at viral entry, but inactive post entry on HDV RNA replication. Inhibition was independent of the NAPs nucleotide sequence, but dependent on both size and amphipathicity of the polymer. NAPs antiviral activity was effective against HDV virions bearing the main hepatitis B virus (HBV) immune escape substitutions (D144A and G145R) and was pangenomic with regard to HBV envelope proteins. Furthermore, similar to immobilized heparin, immobilized NAPs could bind HDV particles suggesting that entry inhibition was due, at least in part, to preventing attachment of the virus to cell surface glycosaminoglycans. The results document NAPs as a novel class of antiviral compounds that can prevent HDV propagation.IMPORTANCEHDV infection causes the most severe form of viral hepatitis in humans and one of the most difficult to cure. Currently, treatments are limited to long-term administration of interferon at high doses, which provide only partial efficacy. There is thus an urgent need for innovative approaches to identify new antiviral against HDV. The significance of our study is in demonstrating that nucleic acid polymers (NAPs) are active against HDV by targeting the envelope of HDV virions. In an in vitro infection assay, NAPs activity was recorded at less than 4 micromolar concentrations in the absence of cell toxicity. Furthermore, the fact that NAPs could block HDV at viral entry, suggest their potential to control the spread of HDV in a chronically HBV-infected liver. In addition, NAPs anti-HDV activity was pangenomic with regard to HBV envelope proteins and not circumvented by HBsAg substitutions associated with HBV immune escape.
PMID:29212929DOI:10.1128/JVI.01416-17
|
|