15/10/02说明:此前论坛服务器频繁出错,现已更换服务器。今后论坛继续数据库备份,不备份上传附件。

肝胆相照论坛

 

 

肝胆相照论坛 论坛 学术讨论& HBV English 寡核苷酸治疗近乎批准
查看: 1518|回复: 3
go

寡核苷酸治疗近乎批准 [复制链接]

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

1
发表于 2017-1-9 08:23 |只看该作者 |倒序浏览 |打印
                        Oligonucleotide Therapeutics Near Approval        

Successful late-stage clinical trials could mark the maturation of a new drug development platform, but the path to commercialization is not without hurdles.

      

                                By Catherine Offord  | December 1, 2016                       

                                       
                                       
                                                                                                                   © ISTOCK.COM/KTSIMAGECold Spring Harbor Laboratory molecular geneticist Adrian Krainer was at a National Institutes of Health workshop in 1999 when he first learned about the crippling neurodegenerative disease spinal muscular atrophy (SMA)—the leading genetic cause of death in infants. The disease has no treatment, and more than 90 percent of infants born with SMA die before the age of two. At the workshop, Krainer recalls, researchers presented their findings on two genes associated with the disease, SMN1 and a duplicate gene, SMN2, both coding for survival motor neuron (SMN) protein, an essential component in the production of spinal motor neurons.
        Despite the apparent similarity of the genes, SMA researcher Christian Lorson, then of Tufts University School of Medicine in Boston, and colleagues had found that a single nucleotide difference was causing the RNA transcripts of each gene to be processed differently, Krainer says. While SMN1—which is usually absent or defective in SMA sufferers—produces functional protein, SMN2 contains a mutation that causes exon 7 to be regularly left out of the transcript during splicing. The resulting messenger RNA (mRNA) is unstable and quickly degraded, resulting in low levels of SMN.
        The research piqued Krainer’s interest. He had been studying general mechanisms of splicing and exon skipping and saw the potential to restore proper splicing of SMN2 transcripts as a way to compensate for SMN1 loss in infants who suffer from SMA. After the workshop, he and his colleagues took up the challenge. In the early 2000s, they developed a splicing enhancer and a synthetic strand of nucleotides that bound close to exon 7 in SMN2 transcripts. On binding, this complementary, or antisense, compound would promote splicing of the nearby exon into the final mRNA, boosting levels of SMN protein.
        A decade of improvements, modifications, and collaboration with antisense therapeutics company Isis (now Ionis) Pharmaceuticals resulted in the development of nusinersen—a drug delivered via spinal injection that is expected to become the first therapeutic for SMA. In August, Ionis halted its Phase 3 trial in SMA patients after interim analyses showed that infants receiving a spinal injection of nusinersen were better able to kick, stand, and walk than infants undergoing a sham procedure. “Obviously, we’re extremely excited,” says Krainer. “It’s sort of beyond anyone’s most optimistic expectations.”
        Nusinersen is more than just a breakthrough for SMA. It’s among a handful of late-stage therapeutics in a class of molecules being hailed as the third major drug-development platform after small molecules and biologics: oligonucleotides. These short, chemically synthesized nucleic acids—between 10 and 30 nucleotides in length—have served as vital research tools for more than half a century, playing central roles in DNA sequencing, polymerase chain reaction (PCR), and molecular cloning. Oligonucleotides have also long been recognized as potential therapeutics thanks to their ability to modify gene expression, and in recent years, the number of clinical trials testing oligonucleotide therapies has spiked. Many believe that the platform will soon be ready to treat a wide range of genetic diseases, including those, such as SMA, that were previously undruggable.
        “The promise is already here,” John Rossi, an RNA biologist and cofounder of Dicerna Pharmaceuticals, wrote in an email to The Scientist, adding that he sees “the next few years as becoming the era [of oligonucleotide therapeutics].”
        A slow start        The first oligonucleotide technology explored for therapeutic purposes was antisense technology, which relies on single-stranded sequences of nucleotides that are complementary to RNA transcripts in human cells. Antisense therapies bind to an mRNA or a pre-mRNA—a transcript awaiting splicing and other modifications—and either block protein translation to eliminate a gene product or, as in the case of nusinersen, alter splicing to restore stability or function to a protein. The technology led to the first oligonucleotide therapeutic marketed in the U.S.: fomivirsen, a drug approved in 1998 that is injected into the eye to treat cytomegalovirus retinitis, an infection afflicting immunocompromised patients.
        In the early 2000s, researchers also began to take therapeutic advantage of a recently discovered mechanism of gene silencing: RNA interference (RNAi). By employing double-stranded small interfering RNAs (siRNAs) to hijack this natural pathway in cells and degrade target mRNA, researchers hoped to block the translation of proteins associated with a range of genetic conditions, from cancers to macular degeneration. Unfortunately, lack of efficacy and immune reactions to the treatments led to a series of disappointing clinical trials in the late 2000s. (See “The Second Coming of RNAi,” The Scientist, 2014.)
        Besides fomivirsen, which was discontinued in the U.S. a decade ago following improvements in HIV medications, only two oligonucleotide drugs had reached the market prior to 2016. The first, pegaptanib, is a protein-blocking RNA known as an aptamer that was approved in 2004 to treat age-related macular degeneration, but soon met the same fate as fomivirsen, being overtaken by a more effective monoclonal antibody treatment. The second, mipomersen, is an antisense oligonucleotide that was approved in 2013 for the treatment of a genetic form of high cholesterol but floundered in the face of poor marketing and a failure to gain regulatory approval in Europe.
                        Oligonucleotide therapeutics are being hailed as the third major drug-development platform after small molecules and biologics.
        “[These drugs] were never commercially successful,” says Dirk Haussecker, an independent biotech consultant and author of The RNAi Therapeutics Blog. “They’re approved, but nobody’s taking or prescribing them.”
        Despite the slow start, oligonucleotides have both therapeutic and commercial promise. In addition to current antisense and RNAi-based therapies in clinical trials, researchers are now developing oligonucleotides that target microRNAs—small, noncoding RNAs that regulate gene expression posttranscriptionally. These include anti-miRs that block the activity of specific microRNAs and miRNA mimics that upregulate it (see table on following page). As of August, there were more than 70 oligonucleotide therapeutics in ongoing or recently completed clinical trials in the U.S. alone, and a recent analysis by a market research firm predicted that the global antisense and RNAi therapeutics market will reach $4.58 billion by 2022.
        Researchers, pharmaceutical companies, and investors now anxiously await results from several late-stage trials, anticipated in 2017, as well as nusinersen’s approval, for confirmation that oligonucleotide therapeutics are finally reaching maturity. “Every year it seems like we’ve gotten closer,” says Phillip Zamore, director of the RNA Institute at the University of Massachusetts School of Medicine and cofounder of RNAi therapeutics company Alnylam Pharmaceuticals. Even RNAi drugs, which joined the game later than antisense, are catching up, he adds. “Now there are Phase 3 clinical trials.”
        Delivering success        One of the main difficulties in developing oligonucleotide therapies is that nucleic acids are broken down by endonucleases in the bloodstream and within cells, making systemic delivery of naked molecules ineffective. While chemical modifications can help antisense oligonucleotides resist this degradation, siRNAs used for RNAi-based therapies are much less stable, and challenges delivering these molecules were blamed for the disappointing drug trials a few years ago. After that, the industry realized that, “to be a successful RNAi company, you had to become a drug delivery company,” says Zamore. “When that was solved, then things took off.”
        Early methods for packaging oligonucleotides used liposomes or lipid nanoparticles that, like unpackaged oligonucleotides, localize to cells in the liver. This natural hepatic affinity pointed the way to some of the most successful drug development in the field, says Barry Greene, president and COO of Alnylam. “It turns out that what some view as a shortcoming—that is, the ability to deliver to hepatocytes—is a treasure trove of opportunities,” he explains. “We’re only at the tip of the iceberg in terms of the kind of genetically valid targets that are in fact produced in hepatocytes.”
        Consequently, most oligonucleotide therapeutics companies have focused on the liver. Ionis has antisense oligonucleotide therapeutics in more than 10 clinical trials targeting diseases in the organ, from thrombosis to hepatocellular carcinoma. And Alnylam’s most advanced therapeutic is an intravenous, nanoparticle-carried drug called patisiran, an RNAi treatment that knocks down the translation of a mutated protein made in the livers of patients with a rare disease called hereditary amyloidosis. Results from Phase 3 trials of the drug are expected in 2017 and, if successful, could pave the way for the first approval of an RNAi therapeutic.
        More recently, Alnylam has conjugated its siRNAs to the sugar molecule N-acetylgalactosamine (GalNAc) to give the drugs even greater affinity for hepatocytes, improve potency, and reduce off-target effects. Early-stage testing of fitusiran, a GalNAc-conjugated siRNA targeting a liver-produced protein associated with hemophilia, is ongoing, the company says. Meanwhile, Ionis has already adopted a similar method to conjugate GalNAc with antisense oligonucleotides destined for the liver—an advance that Ionis claims improves delivery and provides a more than 30-fold increase in potency over unconjugated approaches currently in trials. RNAi company Arrowhead Pharmaceuticals is also using GalNAc to help deliver oligonucleotides to the liver, but instead of conjugating it directly to the siRNA, the company’s dynamic polyconjugate (DPC) technology links the sugar to the siRNA via a polymer that helps protect the cargo until it enters a cell. A recent clinical study on hepatitis B therapeutic ARC-520 found that the drug inhibits the production of viral protein in infected patients by up to 99 percent after a single dose.
        “For anything where the target is made by hepatocytes, the problems are largely solved,” says Zamore. “I think the next big challenges are delivering RNAs to a wider range of tissues and cell types with similar specificity.”
        Although targeting other tissues is challenging, some companies are now making strides to do just that. Ionis, for example, has developed modified antisense oligonucleotides that show effective targeting to cells in the kidney. Arrowhead, meanwhile, is working on DPCs that will target cells in non-liver tissues such as tumors by incorporating ligands that target cell type–specific surface proteins. “It’s a matter of finding the right receptor-ligand combinations and to figure out how to conjugate the proper ligands,” explains Krainer. “Down the line, I think one could have a set of conjugates that would allow you to target particular organs.”
        The waiting game        Despite considerable progress in oligonucleotide delivery, clinical successes have been balanced with setbacks that serve as reminders that the path to commercialization is never guaranteed. In August, for example, biopharmaceutical company and Ionis partner OncoGeneX announced that its antisense drug custirsen failed to improve survival of patients with prostate cancer in late-stage clinical trials. And earlier this year, Ionis reported dangerous reductions in platelets among patients in Phase 3 trials for two unconjugated antisense therapies, one for a rare cardiac condition, and one for elevated triglycerides. Although most drugs in Ionis’s pipeline are now conjugated, which the company hopes will avoid such side effects, the announcement triggered a 40 percent plunge in share prices in May. (Shares are now recovering as the company makes progress with nusinersen.)
        More worryingly for the development of RNAi therapeutics, Alnylam halted development of its GalNAc-conjugated therapeutic revusiran for hereditary amyloidosis this October after reporting more deaths among patients receiving the drug in a Phase 3 trial than among those on a placebo. Despite attempts to reassure investors that other drugs in its pipeline use a newer GalNAc technology, the company saw its market value nearly halve overnight.
        Even for drugs that make it through trials without major complications, there’s still the slog of obtaining regulatory approval. Antisense drug eteplirsen, developed by Sarepta Therapeutics as a treatment for certain Duchenne muscular dystrophy sufferers, attained priority FDA review in late 2015. But the clinical data supporting the drug’s approval—based largely on a trial including just 12 people—came under fire from regulators. The FDA finally granted approval this September, but the decision has proved controversial. “This has been delayed numerous times,” Krainer notes. “Clearly, the drug is safe and there’s no other treatment, but there are questions about efficacy.”
        With these sorts of ups and downs, the commercialization of oligonucleotide therapeutics is risky, Krainer says. “You could have a good drug that fails a clinical trial just because the right outcome measures weren’t selected,” he explains. “It’s expensive enough that I don’t think one gets to play the game too many times. Perhaps you have one shot or two—luck is involved and there’s no guarantee.”
        But as more companies report the results of late-stage trials, a little good news could go a long way, says Ron Renaud, CEO of gene-upregulation biotech RaNa Therapeutics. “There’s so much science and so much knowledge and so much benefit to be gained by everybody. The whole notion of a rising tide lifting all ships definitely resonates with a lot of us in these companies.”
        Just like previous drug platforms, which all took time to reach maturity, oligonucleotide therapeutics may now be on the brink of delivering on the promises of the last 20 years. “People are pretty impatient, but when you look at technologies like these, just the general platform can take decades to develop,” says Krainer. “It was no different for making monoclonal antibodies; . . . it took a really long time. These therapeutics encompass a wide variety of technologies and each of them has to be given a chance to prove its worth.”
        ORDERS OF OLIGONUCLEOTIDES: Multiple therapeutics using small, synthetic nucleic acids, or oligonucleotides, have been designed since the first antisense drugs of the 1990s and early 2000s. Although only four therapies have been approved by the US Food and Drug Administration to date, recent and expected approvals from regulators in the U.S. may give the field the boost it needs to launch this class of molecules as the third major drug development platform after biologics and small molecules.
                                       
                                                                        Tags                                RNAi,                                 RNA interference,                                 oligonucleotides,                                 drug development,                                 disease/medicine and                                 biotech                       
                                       

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

2
发表于 2017-1-9 08:28 |只看该作者
寡核苷酸治疗近乎批准

成功的后期临床试验可以标记一个新的药物开发平台的成熟,但商业化的道路不是没有障碍。

作者:Catherine Offord | 2016年12月1日

©ISTOCK.COM/KTSIMAGECold Spring Harbor实验室分子遗传学家Adrian Krainer于1999年在美国国立卫生研究院的研讨会上首次了解到跛行的神经退行性疾病脊髓性肌萎缩(SMA) - 婴儿死亡的主要遗传原因。该疾病没有治疗,超过90%的SMA出生的婴儿在2岁前死亡。在研讨会上,Krainer回忆说,研究人员提出了他们对与疾病相关的两个基因SMN1和一个重复基因SMN2的研究结果,这两个基因都编码存活运动神经元(SMN)蛋白,脊髓运动神经元的生产中的一个重要组成部分。

尽管基因的明显相似性,SMA研究员Christian Lorson,然后是塔夫茨大学医学院在波士顿和同事发现,单个核苷酸差异导致每个基因的RNA转录本被不同地处理,Krainer说。尽管SMN1(其通常在SMA患者中不存在或有缺陷)产生功能性蛋白,但SMN2含有在剪接期间导致外显子7有规律地留在转录物外的突变。所得到的信使RNA(mRNA)是不稳定的并且快速降解,导致低水平的SMN。

这项研究激发了Krainer的兴趣。他一直在研究剪接和外显子跳跃的一般机制,并且看到恢复SMN2转录物的适当剪接的可能性作为补偿在患有SMA的婴儿中的SMN1损失的方式。在研讨会结束后,他和他的同事们迎接了挑战。在21世纪初,他们开发了剪接增强子和核苷酸的合成链,绑定接近外显子7在SMN2成绩单。在结合时,这种互补或反义化合物将促进附近的外显子剪接成最终mRNA,提高SMN蛋白的水平。

与反义治疗公司Isis(现在的Ionis)制药公司的十年改进,修改和合作导致了Nusinersen的发展,Nusinersen是通过脊髓注射递送的一种药物,预计将成为SMA的首个治疗药物。在8月,Ionis在SMA患者中停止其3期试验,临床分析显示接受nusinersen的脊髓注射的婴儿能够比接受假手术的婴儿更好地踢,站和行走。 “显然,我们非常兴奋,”Krainer说。 “这超出了任何人最乐观的期望。

Nusinersen不仅仅是SMA的突破。它是一类分子中的一小部分后期治疗药物,被称为小分子和生物制剂之后的第三个主要药物开发平台:寡核苷酸。这些短的,化学合成的核酸(长度为10至30个核苷酸)已经作为半个多世纪的重要研究工具,在DNA测序,聚合酶链反应(PCR)和分子克隆中发挥核心作用。由于寡核苷酸修饰基因表达的能力,寡核苷酸也长期以来被认为是潜在的治疗剂,并且近年来,测试寡核苷酸治疗的临床试验的数量已经飙升。许多人认为,该平台将很快准备好治疗广泛的遗传疾病,包括那些以前无法消化的SMA,如SMA。

“这个承诺已经在这里,”RNA生物学家和Dicerna制药公司的共同创始人约翰·罗西在一封给“科学家”的电子邮件中写道,他补充说,他认为“未来几年将成为寡核苷酸治疗的时代。
缓慢的开始

探索用于治疗目的的第一寡核苷酸技术是反义技术,其依赖于与人细胞中的RNA转录物互补的核苷酸的单链序列。反义治疗结合到mRNA或前mRNA-a转录物,等待剪接和其它修饰 - 并阻断蛋白质翻译以消除基因产物,或者如在nusinersen的情况下,改变剪接以恢复蛋白质的稳定性或功能。该技术导致在美国市场上销售的第一种寡核苷酸治疗:fomivirsen,一种在1998年批准的药物,注射到眼睛中以治疗巨细胞病毒视网膜炎,一种感染免疫受损的患者。
在21世纪初,研究人员也开始采取最近发现的基因沉默机制的治疗优势:RNA干扰(RNAi)。通过采用双链小干扰RNA(siRNA)在细胞中劫持这种天然途径并降解靶mRNA,研究人员希望阻止与一系列遗传病症(从癌症到黄斑变性)相关的蛋白质的翻译。不幸的是,治疗的效力和免疫反应的缺乏导致了在21世纪后期的一系列令人失望的临床试验。 (参见“The Second Coming of RNAi,”The Scientist,2014.)

进一步的fomivirsen,在十年前在美国停止了艾滋病毒药物的改进,只有两种寡核苷酸药物在2016年之前到达市场。第一,pegaptanib,是一种蛋白质阻断RNA被称为aamamer,2004年批准为了治疗年龄相关的黄斑变性,但很快遇到了与fomivirsen相同的命运,被更有效的单克隆抗体治疗所超越。第二种,mipomersen,是反义寡核苷酸,批准在2013年用于治疗高胆固醇的遗传形式,但面对营销不良和未能在欧洲获得监管批准而挫败。

寡核苷酸治疗剂被认为是小分子和生物制剂之后的第三个主要药物开发平台。

“这些药物从未在商业上取得成功,”独立生物技术顾问和RNAi治疗博客作者Dirk Haussecker说。 “他们批准了,但没有人服用或处方。

除了目前在临床试验中的基于反义和基于RNAi的治疗之外,研究人员现在开发靶向微RNA的寡核苷酸 - 小的,非编码的RNA,其在转录后调节基因表达。这些包括阻断特定微RNA的活性的抗-miR和上调它的miRNA模拟物(参见下页表格)。截至8月,仅在美国正在进行或最近完成的临床试验中就有70多种寡核苷酸治疗药物,最近一项市场研究公司的分析预测,到2022年全球反义和RNAi治疗药市场将达到45.8亿美元。

研究人员,制药公司和投资者现在焦急地期待几个晚期试验的结果,预计2017年,以及nusinersen的批准,以确认寡核苷酸治疗终于成熟。麻省理工大学医学院RNA研究所和RNAi治疗公司Alnylam Pharmaceuticals联合创始人Phillip Zamore说:“每年看起来我们已经接近了。即使RNAi药物,比反义词加入游戏,正在赶上,他补充说。 3期临床试验。 “。
提供成功

开发寡核苷酸治疗的主要困难之一是核酸被血液中和细胞内的核酸内切酶分解,使裸分子的全身递送无效。虽然化学修饰可以帮助反义寡核苷酸抵抗这种降解,用于基于RNAi的siRNA之后,行业意识到,“要成为一个成功的RNAi公司,你必须成为一个药物交付公司,”疗法是不稳定,这些分子的挑战被指责为几年前的令人失望的药物试验Zamore。“当这解决了,然后事情起飞。

用于包装寡核苷酸的早期方法使用脂质体或脂质纳米颗粒,其与未包装的寡核苷酸一样,定位于肝脏中的细胞。这种天然的肝亲和力指向了该领域最成功的药物开发之路,Alnylam总裁兼首席运营官Barry Greene说。 “事实证明,某些观点认为是一个缺点,即,传递到肝细胞的能力,是一个宝贵的机会,”他解释说。 “我们只是冰山一角,就基因有效靶点的种类而言,事实上是在肝细胞中产生的。

因此,大多数寡核苷酸治疗公司集中在肝脏。 Ionis在超过10个靶向器官疾病,从血栓形成到肝细胞癌的临床试验中有反义寡核苷酸治疗。 Alnylam最先进的治疗方法是一种称为patisiran的静脉注射纳米颗粒药物,一种RNAi治疗方法,可以敲除患者肝脏中突变蛋白质的翻译,这种疾病称为遗传性淀粉样变性。该药物的3期试验的结果预计将于2017年,如果成功,可为第一批RNAi治疗方法铺平道路。
最近,Alnylam将其siRNA与糖分子N-乙酰半乳糖胺(GalNAc)缀合,以使药物对肝细胞的亲和力更大,提高效力,并减少脱靶效应。该公司表示,fitusiran是一种GalNAc偶联的siRNA靶向与血友病相关的肝脏产生的蛋白质的早期检测。同时,Ionis已经采用了类似的方法来将GalNAc与预定用于肝脏的反义寡核苷酸缀合,这是Ionis声称改进递送并且相对于目前在试验中的未缀合方法提供超过30倍的效力。 RNAi公司Arrowhead Pharmaceuticals也使用GalNAc来帮助将寡核苷酸递送到肝脏,而不是将其直接缀合到siRNA,该公司的动态聚合物(DPC)技术通过聚合物将糖链接到siRNA,该聚合物有助于保护货物,直到它进入细胞。最近一项关于乙型肝炎治疗ARC-520的临床研究发现,该药物在单次剂量后抑制感染患者中病毒蛋白的产生高达99%。

“对于任何目标是由肝细胞制成的,问题大部分解决,”萨莫尔说。 “我认为下一个巨大的挑战是将RNA递送到更广泛的具有相似特异性的组织和细胞类型。

虽然瞄准其他组织是具有挑战性的,但一些公司现在正在大步前进。例如,Ionis已经开发了修饰的反义寡核苷酸,其显示有效靶向肾脏中的细胞。同时,箭头正在研究通过掺入靶向细胞类型特异性表面蛋白的配体而靶向非肝组织(例如肿瘤)中的细胞的DPC。 “这是一个问题,找到正确的受体 - 配体组合,并找出如何结合适当的配体,”Krainer解释说。 “下来,我想可以有一组共轭,将允许你瞄准特定的器官。
等待的游戏

尽管在寡核苷酸递送中取得了相当大的进展,但是临床成功已经与挫折平衡,其作为提醒,从不保证商业化的路径。例如,8月份,生物制药公司和Ionis合作伙伴OncoGeneX宣布其反义药物custirsen未能提高前列腺癌患者在晚期临床试验中的生存。今年早些时候,Ionis报告了两种非共轭反义治疗的3期临床试验中血小板的危险降低,其中一种用于罕见的心脏疾病,另一种用于高甘油三酯。虽然Ionis公司管道中的大多数药物已经结合,该公司希望避免这种副作用,但该公告引发了5月份股价下跌40%。 (股票现在正在恢复,因为公司取得进展与nusinersen。)

更令人担心的RNAi治疗的发展,Alnylam停止发展其GalNAc结合治疗revusiran遗传性淀粉样变性,今年10月报告在接受药物的第三阶段试验中的患者比安慰剂更多的死亡。尽管试图向投资者保证,其他药物正在使用一种新的GalNAc技术,该公司的市场价值几乎减半了一夜。

即使对于通过没有严重并发症的试验的药物,仍然有获得监管批准的标准。由Sarepta治疗公司开发的一种Duchenne肌营养不良患者的治疗反应药物eteplirsen在2015年年底获得了FDA的重点审查。但是支持药物批准的临床数据主要基于一个只有12人的试验, 。 FDA最终于9月批准了批准,但该决定被证明是有争议的。 “这已经推迟了很多次,”Krainer说。 “显然,该药是安全的,没有其他治疗,但有关于疗效的问题。

有了这些种种起伏,寡核苷酸治疗药物的商业化是有风险的,Krainer说。 “你可以有一个好的药物,没有通过临床试验,只是因为没有选择正确的结果措施,”他解释说。 “它是昂贵的,我不认为一个人玩游戏太多次。也许你有一枪或两运气,涉及,没有保证。

但是随着越来越多的公司报告后期试验的结果,一个小小的好消息可以走很长的路,基因上调生物技术RaNa治疗的首席执行官Ron Renaud说。 “有这么多的科学和这么多的知识,这么大的好处,每个人都可以获得。整个提升所有船舶的涨潮的概念,确实与这些公司的很多人产生了共鸣。
就像以前的药物平台,所有这些都需要时间才能达到成熟,寡核苷酸治疗剂现在可能会在最近20年的承诺的边缘。 “人们很不耐烦,但是当你看到这样的技术时,只有通用平台需要几十年的时间才能开发出来,”Krainer说。 “制备单克隆抗体没有什么不同; 。 。 。它花了很长时间。这些治疗剂包括各种各样的技术,并且他们中的每一个都必须有机会证明其价值。

寡核苷酸的命令:自从20世纪90年代和21世纪初的第一反义药物以来,已经设计了使用小的,合成的核酸或寡核苷酸的多种治疗剂。虽然到目前为止,美国食品和药物管理局只批准了四种治疗方法,但美国监管机构最近和预期的批准可能会使该领域推出这类分子作为生物制剂后的第三个主要药物开发平台,小分子。
标签
RNAi,RNA干扰,寡核苷酸,药物开发,疾病/医学和生物技术

Rank: 7Rank: 7Rank: 7

现金
3543 元 
精华
帖子
2934 
注册时间
2001-10-26 
最后登录
2018-12-25 
3
发表于 2017-1-9 18:06 |只看该作者
感谢
建议有实力的众筹基金会,十亿元级以上,真劝慰雷军、地产商、首富、百度,强生战略入股,全球重金悬赏求拜攻克乙肝的美国古巴专家英才及技术!!齐参与、正能量,或许好药就在转角间被发现,如果没有?就用真实去验证及考证中草药民间名医,延长寿命
嘤其鸣矣,求其友声! 相彼鸟矣,犹求友声;矧伊人矣,不求友生?神之听之,

Rank: 4

现金
284 元 
精华
帖子
228 
注册时间
2008-12-18 
最后登录
2023-5-12 
4
发表于 2017-1-9 21:21 |只看该作者
能否简单总结一下,是个什么东西?效果如何?
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册

肝胆相照论坛

GMT+8, 2024-5-27 22:47 , Processed in 0.015156 second(s), 11 queries , Gzip On.

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.