15/10/02说明:此前论坛服务器频繁出错,现已更换服务器。今后论坛继续数据库备份,不备份上传附件。

肝胆相照论坛

 

 

肝胆相照论坛 论坛 学术讨论& HBV English DNA聚合酶κ是形成乙型肝炎病毒的共价闭合环状DNA的关键 ...
查看: 891|回复: 7
go

DNA聚合酶κ是形成乙型肝炎病毒的共价闭合环状DNA的关键细 [复制链接]

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

1
发表于 2016-10-27 17:06 |只看该作者 |倒序浏览 |打印
   
PLoS Pathog. 2016 Oct 26;12(10):e1005893. doi: 10.1371/journal.ppat.1005893. eCollection 2016.
DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus.
Qi Y1, Gao Z1,2, Xu G1, Peng B1,2, Liu C1,3, Yan H1, Yao Q1, Sun G1, Liu Y1,4, Tang D1,2, Song Z1, He W1, Sun Y1, Guo JT5, Li W1.
Author information

    1National Institute of Biological Sciences, Beijing, China.
    2Graduate program in School of Life Sciences, Peking University, Beijing, China.
    3College of Life Sciences Beijing Normal University, Beijing, China.
    4School of Life Science, Tsinghua University, Beijing, China.
    5Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America.

Abstract

Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV.

PMID:
    27783675
DOI:
    10.1371/journal.ppat.1005893

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

2
发表于 2016-10-27 17:06 |只看该作者
PLoS Pathog。 2016 Oct 26; 12(10):e1005893。 doi:10.1371 / journal.ppat.1005893。 eCollection 2016。
DNA聚合酶κ是形成乙型肝炎病毒的共价闭合环状DNA的关键细胞因子。
Qi Y1,Gao Z1,2,Xu G1,Peng B1,2,Liu C1,3,Yan H1,Yao Q1,Sun G1,Liu Y1,4,Tang D1,2,Song Z1,He W1,Sun Y1,Guo JT5,Li W1。
作者信息

    1国家生物科学研究所,北京,中国。
    北京大学生命科学学院2研究生课程。
    北京师范大学生命科学学院,北京,中国。
    4清华大学生命科学学院,北京,中国。
    5Baruch S. Blumberg Institute,Doylestown,Pennsylvania,United States of America。

抽象

肝细胞的乙型肝炎病毒(HBV)感染通过结合其细胞受体牛磺胆酸钠共转运多肽(NTCP)开始,随后将病毒核衣壳内化进入细胞质。核衣壳中的病毒松弛环(rc)DNA基因组被转运到细胞核中并转化成共价闭合的环状(ccc)DNA,以用作当前抗病毒治疗难以治疗的病毒持久性储库。已经推测宿主DNA修复酶催化rcDNA转化为cccDNA,然而,填充rcDNA正链间隙的DNA聚合酶仍有待测定。在这里我们进行有针对性的基因筛选与化学抑制结合以识别负责cccDNA形成的细胞DNA聚合酶,并利用重组HBV与衣壳编码缺陷感染HepG2-NTCP细胞与野生型HBV类似的效率,以确保cccDNA合成完全从新生HBV感染。我们发现DNA聚合酶κ(POLK),在非分裂细胞中具有最大活性的Y家族DNA聚合酶,在从头HBV感染中基本上有助于cccDNA形成。通过siRNA敲低或CRISPR / Cas9敲除抑制HepG2-NTCP细胞中POLK的基因表达,抑制rcDNA转化为cccDNA,而敲除细胞中cccDNA形成减少,从而病毒感染可以通过异位表达的POLK。这些研究表明,POLK是一种重要的宿主因子,在新生HBV感染的cccDNA形成所需,并建议POLK可能是开发抗HBV的抗病毒药物的潜在目标。

PMID:
    27783675
DOI:
    10.1371 / journal.ppat.1005893

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

3
发表于 2016-10-27 17:07 |只看该作者
Discussion

Synthesis of cccDNA is a critical, but not well-understood step in the life cycle of hepadnaviruses. Our current study characterized the kinetics of cccDNA formation in HBV infected cells and obtained strong evidence suggesting that cellular POLK plays a crucial role in cccDNA synthesis in de novo HBV infection. In addition, our findings reported herein also provide important clues for further investigation of viral and cellular factors in cccDNA biosynthesis and regulation.
Establishment and regulation of cccDNA pool in virally infected hepatocytes

We demonstrated in this study that cccDNA is formed from incoming virion DNA in HepG2-NTCP cells at as early as 24 h post infection and establishes the pool size of approximately 3 copies of cccDNA per infected cell within a few days of infection. The kinetics of cccDNA accumulation as well as two lines of independent evidence obtained from HBV-ΔHBc infection of HepG2-NTCP cells and viral DNA polymerase inhibitor treatment of wild-type HBV-infected cells strongly support the notion that intracellular amplification does not play a significant role in the establishment of cccDNA pool in the HBV-infected hepatoma cells. This observation is consistent with the findings from HBV infection of primary human hepatocytes and HepaRG cells [38, 39], but distinct from DHBV infection of primary duck hepatocytes where significant intracellular cccDNA amplification occurs in a manner regulated by the level of its large envelope protein expression [19, 20]. However, intracellular amplification of cccDNA has been observed in HepG2-derived cell lines supporting constitutive or inducible HBV replication [40–42]. Developing therapeutics against chronic HBV infection requires better understanding the contribution of intracellular cccDNA amplification in the maintenance of persistent infection, and further investigation of the activity and regulation of this pathway in HBV-infected hepatocytes in vivo is thus warranted.
Role of HBV core protein in cccDNA function

An elegant study by Chisari and colleagues demonstrated that although DHBV deficient for capsid protein expression (DHBVΔcp) infected primary duck hepatocytes and produced similar amounts of cccDNA from the incoming virions as did wild-type DHBV, the cccDNA in DHBVΔcp-infected hepatocytes was significantly less efficiently transcribed into viral RNAs, suggesting an important role of capsid protein in DHBV cccDNA transcription [43]. However, our results showed that HBV-ΔHBc infected HepG2-NTCP cells and expressed viral genes at a similar efficiency as wild-type HBV did. The results therefore suggest that the synthesis of HBV capsid protein may not significantly modify HBV cccDNA transcription activity. Interestingly, DHBV capsid protein is structurally distinct from the capsid proteins of mammalian hepadnaviruses [44] and may have HBx-like function in regulation of DHBV cccDNA transcription. However, the possibility that HBV capsid proteins from in-coming virions interact with cccDNA and promote its transcriptional activity cannot be completely ruled out. It has been shown that HBV capsid protein is a structural component of viral cccDNA minichromosome and its binding reduces the nucleosomal spacing of the minichromosome [45]. In addition, it has also been suggested that capsid protein promotes an epigenetic permissive state of HBV cccDNA by binding on CpG islands of cccDNA [46]. Of note, some non-nucleoside analogue compounds targeting capsid protein can dysregulate functional HBV capsid assembly [47–52]. Those capsid assembly effectors may alter the amounts and/or structure of cccDNA-bound capsid protein and consequentially interfere with cccDNA metabolism and function [53]. Intriguingly, interferon-stimulated gene (ISG) APOBEC3A seems to have a role in the destruction of cccDNA by direct interaction with HBV core protein [54]. Further investigation on the differential roles of capsid proteins in regulation of cccDNA function should shed light on this aspect of hepadnaviral pathobiology.
Role of viral DNA polymerase in cccDNA formation

We showed herein that, similarly to DHBV and WHV, completion of plus strand DNA synthesis during de novo HBV infection of HepG2-NTCP cells is not sensitive to viral DNA polymerase inhibitors, suggesting the reaction is most likely catalyzed by a host DNA polymerase. In support of this hypothesis, by following the fate of viral DNA sequence during conversion of rcDNA into cccDNA, Seeger and colleagues demonstrated that independent of a viral enzymatic activity, a cellular DNA polymerase may fill in the 3’ end of both DNA strands [55]. The observed slight reduction of cccDNA amounts in ADV or ETV treated cells in this study could indicate either a minor contribution of viral DNA polymerase to cccDNA formation or an off-target inhibition of cellular functions required for cccDNA formation. Interestingly, studies of HBV cccDNA biosynthesis via intracellular amplification pathway in HepG2-derived stable cell lines, such as HepAD38 or HepDES19 cells, suggested that deproteinization and uncoating of progeny rcDNA require the completion of plus strand DNA synthesis, which requires viral DNA polymerase activity [41, 42]. Hence, different from rcDNA in virion particles with various length of incompletely synthesized plus-stranded DNA, the precursor rcDNA for cccDNA synthesis from the intracellular amplification pathway may have a very short gap in plus strand DNA and thus distinct DNA repair enzymes may be recruited to convert the rcDNA to cccDNA. Moreover, it had been shown that a small fraction of cccDNA can be formed from dslDNA via NHEJ DNA repair pathway. The cellular DNA polymerases required for cccDNA synthesis through intracellular amplification pathway and from dslDNA remain to be determined in future studies.
Role of host cellular DNA polymerase in cccDNA biosynthesis and implications

While our results demonstrated that POLK plays a critical role in cccDNA formation during de novo HBV infection of cultured HepG2-NTCP, HepaRG and PTHs, we also showed that POLL and POLH play a role in cccDNA formation, albeit at a lesser extent. It is currently not clear whether each of the cellular DNA polymerases plays a redundant or distinct role in de novo cccDNA synthesis. As mentioned above, plus-strand DNA in rcDNA in virions has gaps of heterogeneous lengths. It is possible that depending on the length of gaps, distinct DNA repair complexes containing different repairing DNA polymerases are recruited to fill the gaps with different length. If this is the case, the three DNA polymerases may play non-redundant roles and be involved in conversion of distinct rcDNA precursors into cccDNA. Alternatively, each of the three cellular DNA polymerases may participate in a different DNA repair complex to fill the plus strand gaps, irrespective of their length, but in a different efficiency. These two possibilities will need to be further investigated.

POLK plays a functional role in nucleotide excision repair (NER) pathway by filling the gap produced upon excision of damaged nucleotides [56, 57]. The activity of POLK is partially dependent on the growth state of the cells, and reaches maximum activity under conditions of low deoxynucleotide concentration such as in non-dividing cells [56]. A previous study showed treatment of HBV-transfected HepG2 cells with aphidicolin arrested cells in the G1 phase could result in enhancement of cccDNA synthesis [58]. Consistent with this observation, we found that the efficiency of HBV infection closely correlates with the number of G0/G1 phase cells in HepG2-NTCP cultures. Therefore, HBV cccDNA formation may preferentially occur at G0/G1 phase of cell cycle, supporting the notion that HBV infects non-dividing cells, so that cccDNA is formed and stably exists in quiescent hepatocytes [59]. It is thus conceivable that cell cycle-dependent factor(s) or protein post translational modification affecting the physiologic state of hepatocytes may regulate the formation of HBV cccDNA.

Moreover, because cellular DNA polymerases must work in concert with other DNA repair proteins to restore the structure of damaged DNA, other DNA repair proteins in NER pathway may also play a role in HBV cccDNA formation. For example, it is possible that HBV hijacks cellular endonuclease (e.g. XPG) or exonuclease (e.g. Exo1) to cleave the capped RNA primer to leave a free 5’ end of plus strand DNA of rcDNA, and followed by POLK or other cellular DNA polymerase, such as POLL and POLH, to fill the gap using minus strand DNA as a template. Additionally, POLK has been shown to work together with POLD to fill in single stranded DNA gaps [56, 60] and XRCC1-Lig3 is required for ligation of NER-induced breaks in quiescent cells [61]; hence it will be interesting to test whether those host enzymes are involved in cccDNA formation.

In conclusion, taking advantage of highly efficient genetic manipulation of HepG2-NTCP HBV infection system, and in combination with studies using recombinant HBV virus and chemical inhibitors, we rigorously demonstrated that cellular DNA polymerase κ substantially contributes to HBV cccDNA formation in HepG2-NTCP cells. Our findings shed new light on the molecular mechanism of cccDNA formation and may facilitate the development of novel therapeutics to cure chronic hepatitis B.

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

4
发表于 2016-10-27 17:08 |只看该作者
讨论

cccDNA的合成是肝炎病毒生命周期中的一个关键的,但不是很好理解的步骤。我们目前的研究特点的cccDNA形成在HBV感染细胞的动力学和获得强有力的证据表明细胞POLK在cccDNA合成在de novo HBV感染中发挥关键作用。此外,我们在这里报告的研究结果也提供重要的线索进一步调查cccDNA生物合成和调节中的病毒和细胞因子。
在病毒感染的肝细胞中cccDNA库的建立和调节

我们在本研究中证明,cccDNA是从感染后24小时的HepG2-NTCP细胞中的入侵病毒粒子DNA形成的,并且在感染后的几天内建立大约3个拷贝的cccDNA /感染细胞的库大小。 cccDNA积累的动力学以及从HepG2-NTCP细胞的HBV-ΔHBc感染和病毒DNA聚合酶抑制剂处理野生型HBV感染细胞获得的两行独立证据强烈支持细胞内扩增不起重要作用的概念在HBV感染的肝癌细胞中建立cccDNA库的作用。这一观察结果与原发性人肝细胞和HepaRG细胞的HBV感染的发现一致[38,39],但不同于原代鸭肝细胞的DHBV感染,其中显着的细胞内cccDNA扩增以其大包膜蛋白水平调节的方式发生表达式[19,20]。然而,在支持组成型或诱导型HBV复制的HepG2来源的细胞系中观察到cccDNA的细胞内扩增[40-42]。开发治疗慢性HBV感染的治疗需要更好地了解细胞内cccDNA放大在维持持续感染的贡献,并进一步调查的活动和调节这种途径在HBV感染肝细胞体内是有保证的。
HBV核心蛋白在cccDNA功能中的作用

Chisari及其同事的一个优雅的研究表明,虽然缺乏衣壳蛋白表达(DHBVΔcp)的DHBV感染初级鸭肝细胞并从进入的病毒体产生类似量的cccDNA,如同野生型DHBV,但DHBVΔcp感染的肝细胞中的cccDNA显着较少有效地转录成病毒RNA,提示衣壳蛋白在DHBV cccDNA转录中的重要作用[43]。然而,我们的研究结果表明,HBV-ΔHBc感染HepG2-NTCP细胞,并以与野生型HBV相似的效率表达病毒基因。因此,结果表明HBV衣壳蛋白的合成可能不会显着修饰HBV cccDNA转录活性。有趣的是,DHBV衣壳蛋白在结构上不同于哺乳动物肝炎病毒的衣壳蛋白[44],可能有调节DHBV cccDNA转录的HBx样功能。然而,来自进来的病毒体的HBV衣壳蛋白与cccDNA相互作用并且促进其转录活性的可能性不能完全排除。已经表明,HBV衣壳蛋白是病毒cccDNA微染色体的结构组分,其结合减少了微染色体的核小体间距[45]。此外,还提出衣壳蛋白通过结合cccDNA的CpG岛促进HBV cccDNA的表观遗传容许状态[46]。值得注意的是,一些非核苷类似物化合物靶向衣壳蛋白可以调节功能性HBV衣壳组装[47-52]。这些衣壳组装效应器可以改变cccDNA结合的衣壳蛋白的量和/或结构,并因此干扰cccDNA代谢和功能[53]。有趣的是,干扰素刺激基因(ISG)APOBEC3A似乎在通过与HBV核心蛋白的直接相互作用破坏cccDNA中起作用[54]。对衣壳蛋白在cccDNA功能调节中的不同作用的进一步研究应阐明肝炎病毒病理学的这一方面。
病毒DNA聚合酶在cccDNA形成中的作用

我们在本文中显示,类似于DHBV和WHV,在HepG2-NTCP细胞的从头HBV感染期间正链DNA合成的完成对病毒DNA聚合酶抑制剂不敏感,表明反应最可能由宿主DNA聚合酶催化。为了支持这一假设,通过在rcDNA转化为cccDNA过程中遵循病毒DNA序列的命运,Seeger及其同事证明,不依赖于病毒酶活性,细胞DNA聚合酶可以填充在两条DNA链的3'末端[55 ]。在本研究中观察到ADV或ETV处理的细胞中cccDNA量的轻微降低可以表明病毒DNA聚合酶对cccDNA形成的微小贡献或cccDNA形成所需的细胞功能的脱靶抑制。有趣的是,通过细胞内扩增途径在HepG2衍生的稳定细胞系如HepAD38或HepDES19细胞中对HBV cccDNA生物合成的研究表明,子代rcDNA的去蛋白化和脱壳需要完成正链DNA合成,这需要病毒DNA聚合酶活性[ 41,42]。因此,与具有不同长度的不完全合成的正链DNA的病毒粒子中的rcDNA不同,来自细胞内扩增途径的cccDNA合成的前体rcDNA在正链DNA中可能具有非常短的缺口,因此可以招募不同的DNA修复酶将rcDNA转化为cccDNA。此外,已经显示小部分的cccDNA可以通过NHEJ DNA修复途径由dslDNA形成。通过细胞内扩增途径和来自ds1DNA的cccDNA合成所需的细胞DNA聚合酶仍在未来的研究中确定。
宿主细胞DNA聚合酶在cccDNA生物合成和意义中的作用

虽然我们的研究结果表明,POLK在cccDNA形成过程中重要的作用在培养的HepG2-NTCP,HepaRG和PTH的新生HBV感染过程中,我们还表明POLL和POLH在cccDNA形成中发挥作用,虽然程度较小。目前尚不清楚每个细胞DNA聚合酶是否在从头cccDNA合成中起到冗余或不同的作用。如上所述,病毒体中rcDNA中的正链DNA具有异质长度的空位。根据间隙的长度,可能招募包含不同修复DNA聚合酶的不同DNA修复复合物以填充不同长度的间隙。如果是这种情况,三种DNA聚合酶可能发挥非冗余的作用,并参与不同rcDNA前体转化为cccDNA。或者,三种细胞DNA聚合酶中的每一种可参与不同的DNA修复复合物以填充正链间隙,而不管其长度,但是以不同的效率。这两种可能性需要进一步研究。

POLK通过填补受损核苷酸切除后产生的缺口在核苷酸切除修复(NER)途径中发挥功能性作用[56,57]。 POLK的活性部分依赖于细胞的生长状态,并且在低脱氧核苷酸浓度的条件下(例如在非分裂细胞中)达到最大活性[56]。以前的研究表明,使用aphidicolin处理HBV转染的HepG2细胞,在G1期阻滞细胞可以导致cccDNA合成的增强[58]。与此观察一致,我们发现HBV感染的效率与HepG2-NTCP培养物中的G0 / G1期细胞的数量密切相关。因此,HBV cccDNA形成可能优先发生在细胞周期的G0 / G1期,支持HBV感染非分裂细胞的观念,使得cccDNA形成并稳定存在于静止的肝细胞中[59]。因此,可以想象,影响肝细胞生理状态的细胞周期依赖性因子或蛋白质翻译后修饰可以调节HBV cccDNA的形成。

此外,由于细胞DNA聚合酶必须与其他DNA修复蛋白协同工作以恢复受损DNA的结构,NER途径中的其他DNA修复蛋白也可能在HBV cccDNA形成中起作用。例如,可能的是,HBV劫持细胞内切核酸酶(例如XPG)或外切核酸酶(例如Exo1)以裂解加帽的RNA引物,留下rcDNA的正链DNA的游离5'端,然后是POLK或其他细胞DNA聚合酶,例如POLL和POLH,以使用负链DNA作为模板填充间隙。此外,POLK已经显示与POLD一起填充单链DNA缺口[56,60],并且XRCC1-Lig3是连接NER诱导的休眠细胞中断所需的[61]。因此,测试这些宿主酶是否参与cccDNA形成将是有趣的。

总之,利用HepG2-NTCP HBV感染系统的高效遗传操作,并结合使用重组HBV病毒和化学抑制剂的研究,我们严格证明细胞DNA聚合酶κ实质上有助于HepG2-NTCP细胞中HBV cccDNA形成。我们的研究结果揭示了cccDNA形成的分子机制和可能有助于治疗慢性乙型肝炎的新疗法的发展。
已有 1 人评分现金 收起 理由
MP4 + 1

总评分: 现金 + 1   查看全部评分

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

5
发表于 2016-10-27 17:08 |只看该作者

Rank: 8Rank: 8

现金
4865 元 
精华
帖子
1027 
注册时间
2004-11-2 
最后登录
2020-4-2 
6
发表于 2016-10-27 18:16 |只看该作者
期待不要变成下一个李文辉的受体!当初轰轰烈烈报道,后来就杳无音信了

Rank: 10Rank: 10Rank: 10

现金
20420 元 
精华
帖子
12768 
注册时间
2013-12-29 
最后登录
2024-5-19 
7
发表于 2016-11-1 14:14 |只看该作者
仔细读了,核衣壳好像影响cccdna,核衣壳,核心蛋白靶点药开发了几个,好像希望离我们更近些

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

8
发表于 2016-11-1 18:05 |只看该作者
回复 newchinabok 的帖子

研究提出了许多疑问. 其中一个作者,郭JT,是美国乙型肝炎基金会的科学家.
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册

肝胆相照论坛

GMT+8, 2024-5-19 15:02 , Processed in 0.015348 second(s), 12 queries , Gzip On.

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.