15/10/02说明:此前论坛服务器频繁出错,现已更换服务器。今后论坛继续数据库备份,不备份上传附件。

肝胆相照论坛

 

 

肝胆相照论坛 论坛 学术讨论& HBV English AASLD2016[1832] 非侵入性预测e抗原阴性患者肝脏疾病 ...
查看: 390|回复: 1
go

AASLD2016[1832] 非侵入性预测e抗原阴性患者肝脏疾病 [复制链接]

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

1
发表于 2016-10-25 16:52 |只看该作者 |倒序浏览 |打印
1832
Non-invasive prediction of liver disease in a multi-genotype
cohort of hepatitis B e antigen negative patients
Gayatri Chakrabarty1, Ivana Carey2, Kosh Agarwal2, Daniel M.
Forton1; 1Gastroenterology and Hepatology, St Georges University
of London, London, United Kingdom; 2Liver Unit, Kings College
Hospital, Denmark Hill, London, United Kingdom
Introduction: HBeAg-ve patients with liver disease require
early intervention, yet can be difficult to identify. Liver stiffness
measurement (LSM) can stage liver fibrosis but is not always
available. Fibrosis prediction models using baseline laboratory
parameters exist in HCV infection. Models in HBV have
generally dealt with eAg+ve patients. The majority of patients
starting antivirals in the UK are eAg-ve. Aim To identify factors
that predict liver disease in eAg-ve HBV infection; to establish a
model to predict liver disease at baseline assessment. Methods
270 HBeAg-ve patients (genotypes A to E) from 2 urban teaching
hospitals underwent fibroscan or liver biopsy. No liver
disease (NLD) was defined as LSM< 6kPa or liver biopsy Ishak
F<2 and/ or HAI4 < 4; liver disease (LD) was LSM ≥ 6kPa or
F≥2 and/or HAI ≥ 4 or radiological evidence of cirrhosis. Basic
demographic and lab parameters were recorded and qHBsAg
and IP 10 levels were measured. The patients were randomly
allocated to training (80%) and validation (20%) cohorts, using
SPSS. Univariate analyses were performed between LD and
NLD in the training set. Significant variables (p<0.02) were
then subjected to multivariate stepwise binary logistic regression.
ROC curves were generated for models, which were
tested in the validation cohort. Results Gender, platelet count,
baseline ALT, HBV DNA log10, qHBsAg log10, HBV genotype
and IP10 level were significantly different between LD and NLD
on univariate analyses. All the variables identified in the univariate
analysis were used in the regression analysis. The model
incorporating ALT, HBV DNA, IP 10 and platelet count gave
the best AUROC at 0.79. (PP = Exp (-1.54010 + 0.00340 x IP
10 + 0.01976 x ALT + 0.44801 x HBV DNAlog10 - 0.00909
x Platelet count) / 1+ Exp (-1.54010 + 0.00340 x IP 10 +
0.01976 x ALT + 0.44801 x HBV DNAlog10 - 0.00909 x
Platelet count). The AUC in the small validation cohort was
0.67. A PP cut-off value of >0.20 had a sensitivity of 92% for
LD. A higher cut-off value of <0.60 identified 92% (120/130)
of NLD. Using these 2 cut-offs, 53% of patients could be categorised
with a NPV of 89% and PPV of 81% for LD. Discussion
In a heterogeneous cohort of HBeAg-ve, multi-ethnic, mixed
genotype, treatment naive patients from 2 hospitals, a model
incorporating baseline ALT, HBV DNA, IP 10 and platelets
can usefully identify liver disease (AUROC 0.79). It compares
well with a published model for significant fibrosis in mainly
eAg+ve patients (AUROC 0.80) (Hui et al 2005). Notably
qHBsAg levels were not independently associated with liver
disease. Further work is required to validate in larger cohorts
and to test as a prognostic model over time.
Disclosures:
Ivana Carey - Grant/Research Support: Gilead, Roche; Speaking and Teaching:
BMS
Kosh Agarwal - Advisory Committees or Review Panels: Gilead, BMS, Novartis,
Janssen, AbbVie; Consulting: MSD, Janssen, Achillion, Intercept; Grant/Research
Support: Roche, Gilead, BMS, Arbutus; Speaking and Teaching: Astellas, Gilead,
BMS, GSK
Daniel M. Forton - Advisory Committees or Review Panels: Gilead, Merck, Abbvie;
Speaking and Teaching: Janssen, BMS
The following people have nothing to disclose: Gayatri Chakrabarty

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

2
发表于 2016-10-25 16:53 |只看该作者
AASLD2016 [1832]
非侵入性预测e抗原阴性患者多基因型的肝脏疾病
乙型肝炎e抗原阴性患者的队列
非侵入性预测多基因型的肝脏疾病
乙型肝炎e抗原阴性患者的队列
Gayatri Chakrabarty1,Ivana Carey2,Kosh Agarwal2,Daniel M.
Forton1; 1圣乔治大学胃肠病学和肝病学
伦敦,伦敦,英国; 2国王学院肝脏单位
医院,丹麦小山,伦敦,英国
简介:HBeAg-ve患者有肝病需要
早期干预,但可能难以识别。肝硬度
测量(LSM)可以分期肝纤维化但不总是
可用。纤维化预测模型使用基线实验室
参数存在于HCV感染中。 HBV中的模型
一般处理eAg + ve患者。大多数患者
在英国开始抗病毒药物是eAgve。目的识别因素
预测eAg-HBV感染中的肝病;建立一个
模型预测肝脏疾病在基线评估。方法
270例HBeAg-ve患者(基因型A至E)从2次城市教学
医院进行纤维化或肝活检。没有肝脏
疾病(NLD)定义为LSM <6kPa或肝活检Ishak
F <2和/或HAI4 <4;肝病(LD)为LSM≥6kPa或
F≥2和/或HAI≥4或肝硬化的放射学证据。基本
记录人口统计学和实验室参数,qHBsAg
并测量IP 10水平。患者随机
分配给培训(80%)和验证(20%)队列,使用
SPSS。在LD和之间进行单变量分析
NLD在训练集。显着变量(p <0.02)
然后进行多元逐步二元逻辑回归。
为模型生成ROC曲线
在验证队列中测试。结果性别,血小板计数,
基线ALT,HBV DNA log10,qHBsAg log10,HBV基因型
和IP10水平在LD和NLD之间显着不同
单变量分析。在单变量中识别的所有变量
分析用于回归分析。该模型
结合ALT,HBV DNA,IP 10和血小板计数
最好的AUROC在0.79。 (PP = Exp(-1.54010 + 0.00340×IP
10 + 0.01976×ALT + 0.44801×HBV DNAlog10-0.00909
x血小板计数)/ 1 + Exp(-1.54010 + 0.00340×IP 10 +
0.01976×ALT + 0.44801×HBV DNAlog10-0.00909×
血小板计数)。小验证队列中的AUC
0.67。 > 0.20的PP截止值具有92%的灵敏度
LD。较高的截断值<0.60确定92%(120/130)
的NLD。使用这两个截止值,53%的患者可以分类
对于LD,NPV为89%,PPV为81%。讨论
在一个异质群体的HBeAg-ve,多种族,混合
基因型,治疗原初病人从2家医院,一个模型
纳入基线ALT,HBV DNA,IP 10和血小板
可有效识别肝脏疾病(AUROC 0.79)。比较
以及主要的已发表的显着纤维化模型
eAg + ve患者(AUROC 0.80)(Hui等人,2005)。值得注意
qHBsAg水平不独立与肝相关
疾病。需要进一步的工作来在更大的队列中验证
并作为预后模型随时间测试。
披露:
Ivana Carey - 资助/研究支持:Gilead,Roche;口语和教学:
BMS
Kosh Agarwal - 咨询委员会或审查小组:G​​ilead,BMS,Novartis,
Janssen,AbbVie;咨询:MSD,杨森,Achillion,拦截;资助/研究
支持:罗氏,吉利德,BMS,杨梅;口语和教学:Astellas,Gilead,
BMS,GSK
咨询委员会或审查小组:G​​ilead,Merck,Abbvie;
口语和教学:Janssen,BMS
下面的人没有什么可以披露:Gayatri Chakrabarty
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册

肝胆相照论坛

GMT+8, 2024-11-14 14:29 , Processed in 0.012836 second(s), 11 queries , Gzip On.

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.