- 现金
- 62111 元
- 精华
- 26
- 帖子
- 30437
- 注册时间
- 2009-10-5
- 最后登录
- 2022-12-28
|
Antiviral efficacy of entecavir versus entecavir plus adefovir for hepatitis B virus rtA181V/T mutants alone
Myung Jin Oh1, Heon Ju Lee2
1 Department of Internal Medicine, CHA University School of Medicine, CHA Gumi Medical Center, Gumi, South Korea
2 Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
Click here for correspondence address and email
Date of Submission 19-Mar-2015
Date of Acceptance 12-Jun-2015
Date of Web Publication 12-Jan-2016
Abstract
Background/Aims: Hepatitis B virus (HBV) rtA181V/T mutants developed by long-term nucleos(t) ide analogue therapy are known to present cross-resistance for other nucleos (t) ide analogues, except entecavir (ETV). Some studies reported that HBV rtA181V/T mutants could induce cross-resistance to ETV and showed incomplete response as well as persistence of HBV DNA, despite rescue therapy by ETV. This study aimed to investigate the antiviral efficacy of ETV monotherapy and ETV plus adefovir (ADV) as rescue therapy for HBV rtA181V/T single mutation. Patients and Methods: A total of 30 patients who received ETV alone (1.0 mg/day, n = 16) or ETV plus ADV (10.0 mg/day, n = 14) over 48 weeks between April 2008 and October 2011 were enrolled. Virological, biochemical, and serological response at 48 weeks of rescue therapy were investigated retrospectively. Results: No significant difference in baseline characteristics was observed between the ETV group and the ETV plus ADV group. Virological response showed complete response (62.5 vs. 42.9%), partial response (6.3 vs. 28.6%), non-response (25.0 vs. 28.6%), and virological breakthrough (6.3 vs. 0%) in the two groups, respectively. Virological response did not statistically differ between both groups (P = 0.278). No significant difference in the mean reduction of serum HBV DNA and biochemical response was observed between both groups (4.3 ± 2.9 vs. 4.1 ± 1.8 log 10 IU/ml; P = 0.294 and 88.9 vs. 100%; P = 1.000, respectively). In addition, no significant difference in HBeAg loss or seroconversion was observed between the two groups (26.7 vs. 28.6%; P = 1.000). Conclusions: ETV monotherapy and ETV plus ADV therapy were clinically effective and comparable as rescue therapy for HBV rtA181V/T mutants alone.
Keywords: Adefovir, entecavir, hepatitis B virus, rescue therapy, rtA181V/T mutants
How to cite this article:
Oh MJ, Lee HJ. Antiviral efficacy of entecavir versus entecavir plus adefovir for hepatitis B virus rtA181V/T mutants alone. Saudi J Gastroenterol 2016;22:37-42
How to cite this URL:
Oh MJ, Lee HJ. Antiviral efficacy of entecavir versus entecavir plus adefovir for hepatitis B virus rtA181V/T mutants alone. Saudi J Gastroenterol [serial online] 2016 [cited 2016 Jan 12];22:37-42. Available from: http://www.saudijgastro.com/text.asp?2016/22/1/37/173757
Treatment of hepatitis B virus (HBV) infection has improved significantly due to development of nucleos (t) ide analogues (NA), including lamivudine (LMV), adefovir (ADV), telbivudine (LdT), clevudine (CLV), entecavir (ETV), and tenofovir (TDF). [1],[2],[3] Durable suppression of serum HBV DNA through NA therapy can prevent progression of serious HBV-related liver diseases such as cirrhosis and hepatocellular carcinoma. [4],[5] However, treatment of HBV infection with NA has a fatal weakness in that NA cannot remove covalently closed circular DNA in the nucleus of infected hepatocytes and the rate of virological relapse is high when NA therapy is discontinued. [6] Consequently, an indefinite therapeutic duration is essential in NA therapy for chronic hepatitis B. Prolonged treatment with NA inevitably results in development of drug resistance mutation, although it is rare in ETV or TDF therapy. [7],[8]
Of NA-related HBV mutants, HBV rtA181V/T mutants develop as a result of mutation of the HBV reverse transcriptase gene at position 181, where an alanine (A) is substituted with a valine (V) or threonine (T). HBV rtA181V/T mutants have been reported in chronic hepatitis B patients who received antiviral treatment with LMV, ADV, LdT, or CLV, and have been known to present cross-resistance against other NA, except ETV. [9],[10],[11] Thus, ETV with high susceptibility in vitro has been used primarily as rescue therapy for HBV rtA181V/T mutants. [12] However, some studies reported that HBV rtA181V/T mutants could even induce cross-resistance to ETV. [13],[14] In practice, a clinical investigation reported that HBV rtA181V/T mutants might present persistence of HBV DNA and showed an association with incomplete response, despite rescue therapy by ETV. [15]
In general, the majority of HBV rtA181V/T mutants are known to be induced after ADV therapy, along with the rtN236T mutant. Many guidelines published in Korea, the United States, and Europe recommend ETV plus TDF (or ADV if TDF is unavailable) as rescue therapy for HBV rtA181V/T mutants. [1],[2],[3] However, there is no specific therapeutic recommendation or clinical study on HBV rtA181V/T single mutation. Thus, antiviral therapy should be determined to support the decision on which rescue therapy, add-on therapy with ETV or switch to ETV monotherapy, is to be applied in patients who received prior ADV therapy for HBV rtA181V/T mutants alone. In other words, the aim of this study is to investigate the antiviral efficacy of ETV alone and in combination with ADV for HBV rtA181V/T single mutation.
Discussion Top
Development of NA with a high genetic barrier, such as ETV and TDF, has revolutionized our ideas regarding treatment of HBV. The optimal therapeutic goal or complete suppression of HBV DNA can be achieved in many CHB patients through ETV or TDF therapy. However, NA used prior to the introduction of ETV or TDF can hardly be free from the problem of development of drug resistance related to long-term medication. Above all, the emergence of cross-resistance or multidrug resistance of HBV can be more problematic due to sequential monotherapy for treatment of chronic hepatitis B. [11],[16],[17] Cross-resistance of HBV, including HBV rtA181V/T mutants, can result in development of serious liver-related diseases such as hepatic failure or progression to liver disease. [11],[15],[18],[19] HBV rtA181V/T mutants are more important in practice because a single mutation can confer multidrug resistance against the L-nucleoside LMV, CLV, and LdT, as well as the alkyl phosphonates ADV and TDF. [10],[11],[12] As a result, the standard of care for HBV rtA181V/T mutants has not been established and clinical evidence of optimal treatment for HBV rtA181V/T mutants is also lacking. Although many authorized guidelines have recommended the combination therapy of a nucleoside and a nucleotide analogue for multidrug resistance of HBV, the efficacy has not been confirmed in practice. [1],[2],[3] Thus, to the best of our knowledge, this research appears to be valuable as it provides rare clinical evidence of treatment of HBV rtA181V/T mutants alone.
In this study, all therapeutic responses of HBV rtA181V/T mutants alone, including decline of serum HBV DNA, virological, biochemical, and serological responses did not differ significantly between the ETV monotherapy group and the ETV plus ADV group (P > 0.05). In addition, a study on multidrug resistance of HBV reported a similar result showing that antiviral efficacy of ETV plus ADV combination therapy was not clinically superior to that of ETV monotherapy. [20]
In our study, virological breakthrough occurred in one patient belonging to the ETV monotherapy group. The patient had received CLV therapy prior to detection of the HBV rtA181V mutant. ETV alone was administered as rescue therapy for the HBV rtA181V mutant. Reduction of serum HBV DNA by more than 2 log 10 IU/ml was observed at 24 weeks. However, virological breakthrough occurred at 48 weeks. At 48 weeks, sequencing analysis for the reverse transcriptase gene of HBV was performed in order to detect the cause of the virological breakthrough. Newly developed HBV rtM204I and rtP237H mutants were detected, and the pre-existing HBV rtA181V mutant disappeared completely through rescue therapy. The patient received ETV plus TDF combination therapy after the introduction of TDF in Korea, and partial virological response has been shown. Although liver failure or serious complications related to HBV did not happen, occurrence of virological breakthrough by ETV monotherapy might be problematic. The appearance of mutations other than HBV rtA181V/T mutants in this case may be associated with sequential antiviral monotherapy, as mentioned above, and is a problem to be solved before agreement on use of ETV monotherapy for HBV rtA181V/T mutants.
In our study, the mean duration of previous antiviral therapy prior to rescue therapy was longer in patients of the ETV plus ADV group. The reason may be associated with the fact that physicians are concerned about the increased risk of development of drug resistance to HBV according to therapeutic duration. [2] Therefore, there was a high probability of intentional selection of ADV combination therapy. However, no statistically significant difference in therapeutic results was observed between the methods of rescue therapy. In addition, although there was no statistical significance, more ADV-experienced patients were recruited in the ETV plus ADV group. It seemed that more add-on therapy with ETV was intentionally selected in the patients who received prior ADV therapy.
Response to antiviral therapy differed according to genotype. [21] A recent study reported that drug susceptibility of HBV rtA181V/T mutants was different, and the difference might be explained by a difference in HBV genotypes. [12] In addition, an investigation conducted in China reported that the genotype-dependent polymorphism feature of HBV reverse transcriptase sequences in treatment-naïve chronic hepatitis B patients would be an important basis for understanding evolution of NA resistance. [22] As a result, the antiviral efficacy of ETV or ETV plus ADV as rescue therapy for HBV rtA181V/T mutants may be related to the genotypes of HBV. However, the genotypes of HBV in most Korean patients were known to be genotype C2; therefore, in this study, HBV genotypes of the enrolled patients were not investigated. [23] Consequently, there is a limitation to application of our results for other genotypes of HBV, except for the predominant genotype C in Korea. Clinical researches for rescue therapy for HBV rtA181V/T mutants should be performed considering the discrepancy in genotypes of HBV.
There were some limitations in this study. This research was conducted retrospectively, with an insufficient number of subjects. Thus, there might be a limitation of selection bias. In addition, the duration of rescue therapy was relatively short term. The outcomes can change through a longer follow-up period. After rescue therapy for rtA181V/T mutants alone, newly developed mutants or disappearance of HBV rtA181V/T mutants were not evaluated in total. Finally, TDF, which is known to be a potent HBV inhibitor with a higher barrier to resistance, has recently been used in Korea. [24],[25] As a substitute of ADV, antiviral efficacy of TDF for HBV rtA181V/T mutants is still unclear in practice. Further investigation of rescue therapy, including TDF, for HBV rtA181V/T mutants alone will be necessary.
Conclusion Top
In conclusion, findings of this study demonstrated that ETV monotherapy and ETV plus ADV therapy were clinically effective and comparable as rescue therapy for HBV rtA181V/T mutants alone. However, occurrence of virological breakthrough by ETV monotherapy may be problematic. Large-scale, long-term studies of rescue therapy for HBV rtA181V/T mutants alone should be conducted, and therapeutic plans for achievement of further antiviral efficacy for HBV rtA181V/T mutants alone should be established and recommended.
|
|