15/10/02说明:此前论坛服务器频繁出错,现已更换服务器。今后论坛继续数据库备份,不备份上传附件。

肝胆相照论坛

 

 

肝胆相照论坛 论坛 学术讨论& HBV English 抗HBV药物:进度,未满足的需求,而新希望 ...
查看: 1682|回复: 7
go

抗HBV药物:进度,未满足的需求,而新希望 [复制链接]

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

1
发表于 2015-10-9 22:06 |只看该作者 |倒序浏览 |打印
Viruses 2015, 7(9), 4960-4977; doi:10.3390/v7092854
Review
Anti-HBV Drugs: Progress, Unmet Needs, and New Hope
Lei Kang 1,†, Jiaqian Pan 1,†, Jiaofen Wu 2, Jiali Hu 3, Qian Sun 1 and Jing Tang 1,*
1
Department of Clinical Pharmacy, Shanghai First People’s Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China; [email protected] (L.K.); [email protected] (J.P.); [email protected] (Q.S.)
2
Department of Pharmacy, Ningbo Medical Treatment Center Lihuili Hospital, 57 Xingning Road, Ningbo 315040, China; [email protected]
3
Department of Pharmacy, The Third Staff Hospital of Baogang Group, 15 Qingnian Road, Baotou 014010, China; [email protected]

These authors contributed equally to this work.
*
[email protected]; Tel.: +86-21-3779-8317; Fax: +86-21-3779-8605
Academic Editor: David Boehr
Received: 30 April 2015 / Accepted: 24 August 2015 / Published: 15 September 2015
Abstract: Approximately 240 million people worldwide are chronically infected with hepatitis B virus (HBV), which represents a significant challenge to public health. The current goal in treating chronic HBV infection is to block progression of HBV-related liver injury and inflammation to end-stage liver diseases, including cirrhosis and hepatocellular carcinoma, because we are unable to eliminate chronic HBV infection. Available therapies for chronic HBV infection mainly include nucleos/tide analogues (NAs), non-NAs, and immunomodulatory agents. However, none of them is able to clear chronic HBV infection. Thus, a new generation of anti-HBV drugs is urgently needed. Progress has been made in the development and testing of new therapeutics against chronic HBV infection. This review aims to summarize the state of the art in new HBV drug research and development and to forecast research and development trends and directions in the near future.
Keywords:
hepatitis B virus; anti-HBV drugs; research and development; guidelines
3.3. Traditional Chinese Medicine
3.3.1. Sedum sarmentosum Granules

Sedum sarmentosum granules are derived from either the fresh or dried whole plant of sarmentosum, which belongs to the Crassulaceae family. Investigation of effective pharmacological components has shown that the liver protective function is mainly based on constituents of megastigmane glycosides [28]. Experiments using an animal liver injury model have shown that Sedum sarmentosum granules can reduce serum ALT and aspartate aminotransferase (AST) levels in animals with acute liver injury [29]. In clinical practice, it is mainly used for treating acute or chronic hepatitis, especially patients whose cereal third transaminase level is increased [30]. In addition, Sedum sarmentosum granules can up-regulate cellular immunity even in a state of inhibition, which is crucial for facilitating recovery from liver injury.

At present, the mechanism of action and toxicology of this traditional Chinese medicine remain unknown, and therefore, reasonable dosages can only be empirically determined based on patients’ conditions.
Table     Table 1. Summary of the structures of the anti-HBV drugs.

Click here to display table
3.3.2. Oxymatrine

Oxymatrine, an alkaloid extracted from the herb Sophora alopecuraides L, exhibits an anti-HBV effect in both HBV transgenic mice [36,37] and patients with chronic HBV infection [38], as shown in Table 1. Chen et al. [36] and Lu et al. [37] independently found that oxymatrine can suppress the levels of HBsAg and HBcAg in liver and HBV DNA in serum of transgenic mice. Recently, a clinical study [39] found that the combination of oxymatrine with lamivudine can prevent the development of lamivudine resistance in chronic HBV-infected patients. However, the antiviral mechanisms or targets of oxymatrine against HBV remain unknown. Xu et al. [40] suggested that oxymatrine may interfere with the packaging process of pgRNA into the nucleocapsid or suppress the activity of viral DNA polymerase. Wang et al. [41] found that oxymatrine may interfere with the reverse transcription process from pgRNA to DNA by destabilizing heat stress cognate 70 (Hsc70) mRNA.

Although oxymatrine was mentioned in the 2005 Chinese Guideline for Prevention and Treatment of Chronic HBV Infection [42], further longer-term, multicenter, and randomized, controlled clinical trials with large numbers of cases are needed to validate antiviral efficacy.
4. New Anti-HBV Drugs under Development and Evaluation
4.1. New Drugs that Target the Viral Components
4.1.1. MCC-478


MCC-478, an adefovir derivative, has been in clinical Phase I trials for safety and efficacy assessment [43,44]. It acts similarly to other NAs and can inhibit HBV replication by inhibiting P protein packaging reaction. MCC-478 can be effective against both wild-type HBV and lamivudine-resistant mutants [45,46].
4.1.2. cccDNA

Currently, the first-line antiviral therapy is NA-based treatment, which functions to suppress HBV replication. Although new cccDNA amplification is restrained, the hepatocytes remain infected due to persistent cccDNA in the nucleus, which escapes via the error-prone viral polymerase [47] and drug-resistance mutants [48]. Therefore, sustained elimination of cccDNA from infected hepatocytes represents a major challenge, and one possible solution is immunological therapy, such as cytokine-mediated or immune-associated receptor-mediated cccDNA degradation.

A very recent study by Lucifora et al. [49] demonstrated that high-dose IFN-α can induce cccDNA eradication in HBV-infected hepatocytes. Although the approved IFN-α therapy is effective in some patients, a relatively low response rate [50], contraindications, less convenient parenteral administration [51], and certain serious adverse effects [52] all limit its clinical application. Therefore, the better therapeutic option is the alternative receptor-mediated cccDNA degradation. Through the use of specific antibodies, lymphotoxin (LT) β receptor (LTβR) activation was also shown to induce cccDNA eradication in HBV-infected hepatocytes, without causing any detectable hepatocytotoxicity. With respect to the underlying mechanism, LTβR activation can up-regulate the expression of nuclear APOBEC3 (A3) deaminases and subsequently induce deamination and A purinic/A pyrimidinic (AP) site formation in HBV cccDNA, resulting in its degradation, without affecting host genomic DNA. The A3 family members of A3A and A3B, which are located in the nucleus [53], play an essential role in the eradication of foreign DNA [54,55]. They might be targeted to cccDNA by their interaction with the HBV core protein, suggesting a selective mechanism for distinguishing HBV cccDNA from host genomic DNA. Additionally, IFN-α was found to induce a similar effect, which indicates that, through use of LTβR agonists or adoptive T cell therapy [56], receptor-mediated cccDNA degradation, if confirmed in clinical trials, could lead to clearance of chronic HBV infection from the liver.

In addition, Ahmed et al. [57] summarized current therapeutic strategies against cccDNA production. In addition to INFs and LTβR agonists, factors (methylation and acetylation) affecting the process of cccDNA transcription and translation and DNA cleavage enzymes (zinc-finger protein nucleases and transcription-activator-like effectors), which interrupt the structure and/or functions of cccDNA, are some of the other possible approaches.
4.1.3. HBsAg Gene

The major component of HBsAg is the small S protein with 226 amino acids. HBsAg elicits production of neutralizing antibodies. However, HBsAg is overwhelmingly produced and stably maintained in chronically HBV-infected patients, which contributes to the suppression of an HBV-specific immune response. In addition to the immune response, HBsAg is required for assembling viral particles. A group of researchers [58] investigated the cellular gene expression profile in cells containing transfected HBsAg gene via microarray analysis. It was found that among 1152 gene analyzed, 30 were significantly upregulated, including tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor, cell division cycle protein (CDC23), and FKBP-associated protein (FAP48). Moreover, 29 genes were significantly down-regulated, including TNF receptor-associated factor (TRAF), TNF receptor-associated protein (AD022), and TNF receptor-associated factor 2 (TRAF2). These genes impact cell growth, apoptosis, signal transduction, immune regulation, and tumorigenesis. Both up- and down-regulation of specific proteins is involved in the process of apoptosis, suggesting that HBsAg is probably involved in the regulation of apoptosis. Furthermore, the HBsAg gene is thought to be involved in HCC development. Taken together, these findings suggest that HBsAg is a potential target for HCC gene therapy.
4.1.4. Chinese Herbal Medicines

Helioxanthin (HE-145) is an arylnaphthalene ligand isolated from Taiwania Cryptomerioides. HE-145 and its analogues 5-4-2 [59], 8-1 [60], 32 [61], and 15 [62] have been reported to exhibit potent anti-HBV activity in vitro. They not only suppress the expression of HBV RNAs and proteins, but also suppress viral DNA replication of both wild-type and lamivudine-resistant mutants. The mode of action involves decreasing the DNA binding activity of hepatocyte nuclear extracts to specific cis-elements in the HBV core promoter, whereas the ectopic expression of the cis-elements relieves such suppression. Thus, HE-145 suppresses HBV gene expression and replication by selectively modulating the host transcriptional machinery [63].

HE-145 analogue 8-1 [60] reduces activity at all HBV promoters by post-transcriptionally decreasing the expression of critical transcription factors in HBV-producing cells, which diminishes their binding to the precore/core promoter enhancer II region. Thus, it blocks viral gene expression to negatively impact viral DNA replication.

Pang et al. [64] found that the ethanol extract from Ampelopsis sinica root (EASR) effectively suppresses the levels of HBsAg, HBeAg, and extracellular HBV DNA in vitro by selectively inhibiting the activities of several HBV promoters and the p53-associated signaling pathway.
4.2. New Drugs that Target Cellular Factors
4.2.1. HBV Receptors


HBV is enveloped with viral envelope proteins. HBV envelope proteins not only protect the virus but also make it infectious as they are required for viral entry, a first step for initiating HBV infection. The viral entry is mediated by specific interactions between viral envelope proteins and receptors on hepatocytes. Studies have shown that the myristoylated preS1 domain of HBV L-protein plays a pivotal role in viral infectivity by mediating attachment to a hepatocyte-specific receptor [65,66]. Recently, one of the assumed HBV receptors was identified as sodium taurocholate cotransporting polypeptide (NTCP) [13]. NTCP-mediated HBV and HDV entry has been independently confirmed by other groups [67,68].

NTCP represents a new target for the development of therapeutics that can block HBV entry. Myrcludex-B, a synthetic lipopeptide derived from the HBV preS1 domain sequence, has been shown to specifically bind to NTCP. It can efficiently block de novo HBV infection and prevent intrahepatic viral spreading both in vitro and in vivo [67,69]. In addition, NTCP also functions as a hepatic bile acid transporter that mediates the uptake of most sodium-dependent bile salts into hepatocytes. Yan et al. [68] found that two uptake functions of NTCP seem to be mutually exclusive, implying that the regulation of uptake of bile acids or their derivatives could impact HBV entry, a potentially new strategy for the development of novel antiviral drugs.

NTCP expression is subjected to cellular regulation. It was suggested that retinoic acid receptor (RAR) regulates the promoter activity of the human NTCP (hNTCP) gene [70]. Tsukuda et al. [70] demonstrated that a RAR-selective antagonist Ro41-5253 decreases cellular susceptibility to HBV infection by inhibiting hNTCP promoter activity. Furthermore, IL-6 was found to regulate NTCP expression, and the effect of IL-6 on HBV entry was also noted. Bouezzedine et al. [71] found that NTCP mRNA expression is reduced by 98%, along with an 80% decrease in NTCP-mediated taurocholate uptake and 90% inhibition of HBV entry, upon pretreatment of HepaRG cells with IL-6. Such findings require further validation in more stringent infection systems.

Other cellular factors that are involved in the HBV lifecycle include the Toll-like receptors (TLRs). TLRs are known to mediate the innate immune response to infection. TLRs recognize pathogen-associated molecular patterns and respond by activating a series of antiviral mechanisms. The TLR-ligand interaction results in the production and release of antiviral molecules such as IFNs, pro-inflammatory cytokines, and chemokines. However, HBV can disrupt TLR expression and hinder intracellular signaling cascades as a strategy for evading the innate immune response to chronic HBV infection. An emerging new treatment strategy involves combining antiviral treatment with adjuvant therapy using a TLR agonist to restore the innate immune response. TLR ligands that can activate the TLR-mediated innate immune response may represent promising adjuvant drug candidates. Isogawa et al. [72] found that all ligands, except the one for TLR2, inhibit HBV replication in a IFN-α- and -β-dependent manner after ligands specific for TLR 2-5, 7, and 9 are individually administered to HBV transgenic mice, suggesting that ligand-TLR interaction can elicit an effective immune response to inhibit HBV replication.

GS-9620, an orally-administered agonist of TLR7, was investigated for its safety, tolerability, pharmacokinetics, and pharmacodynamics in healthy volunteers and hepatitis C virus (HCV)- and HBV-infected patients. Three phase I clinical trials were completed [73,74,75]. GS9620 was well-absorbed and tolerated at oral doses of 0.3, 1, 2, 4, 6, 8, or 12 mg per day. The tested dosages were finally adjusted to 0.3, 1, 2, and 4 mg because chemokines/cytokines and IFN-stimulated genes (ISGs) can be induced at doses ≥2 mg. The most common adverse events were flu-like symptoms and headache. In healthy volunteers, minimal adverse events were similar to symptoms associated with an increased serum IFN-α level. In the majority of HBV- and HCV-infected patients, adverse events varied from mild to moderate in severity and the serum IFN-α levels became detectable in 16.7% (8/48) and 12% of HCV and HBV patients, respectively. A transient dose-dependent ISG15 induction was observed, peaking within 48 hours and followed by a decrease to baseline within 7 days. However, there were no significant changes in HCV RNA in HCV-infected patients, and no significant reductions of the HBsAg or HBV DNA level in HBV-infected patients either.

Recently, Zhang et al. [76] described a subgroup of the TLR family and reported that TLR3 and TLR2/4-mediated innate immune responses can control HBV infection. Kapoor et al. [77] summarized the roles of TLR7 and TLR9 in chronic HBV infection.
4.2.2. Novel Target: La Protein Inhibitor (HBSC11)

La protein [78] is a phosphoprotein with a molecular weight of 47 kDa. It was initially thought to be a self-antigen produced in patients with systemic lupus erythematosus (SLE) and primary Sjogren’s syndrome (pSS). Now, it is known that human La protein is a multifunctional RNA-binding protein that is also involved in HBV RNA metabolism. A previous study showed that La protein exhibits a protective effect against HBV, and the protein kinase CK2 (tyrosine kinase II) enables La protein to be phosphorylated at serine 366, which activates the La protein functions [79]. Recently, in vitro experiments have also shown that La protein is the HBV RNA transcription factor. It transfers the HBsAg-specific cytotoxic T cells (CLTs) to the liver of HBV-infected transgenic mice and degrades HBV RNA, which leads to the disappearance of mouse La protein [80]. Based on the findings described above La protein is involved in HBV replication. Researchers have utilized virtual screening techniques to filter the La protein binding sites through multi-level molecular docking and target screening process. HBSC11, a novel inhibitor that targets human La protein was shown to have an anti-HBV effect, via the use of the Specs database and laboratory chemical database. This in vitro validation shows that HBSC11 could potently inhibit the transcription and expression of La protein [81].
4.2.3. Transforming Growth Factor-β (TGF-β)

The TGF-β superfamily consists of a group of bioactive polypeptides with related structures and similar functions in regulating cell growth, differentiation, migration, death, and extracellular matrix (ECM) production. Thus, TGF-β can regulate the growth and differentiation of endothelial cells, inflammatory cell chemotaxis, fibroblast proliferation, carcinogenesis, and ECM synthesis and degradation. Smad3, a key protein in the Smads signaling pathway, plays a positive role in the regulation of the TGF-β1 pathway, which is highly involved in organ fibrosis. In a clinical study [82], researchers detected an abnormally higher level of TGF-β1 in liver cancer tissue via immunohistochemistry. Furthermore, TGF-β levels were elevated in the liver cancer tissues, regardless of whether they represented primary or metastatic cancer. In addition, many studies have suggested that TGF-β1 is involved in the pathogenic process of hepatitis and liver fibrosis.

In an investigation of TGF-β1 expression in chronic HBV infection, Peng et al. [83] found that the serum TGF-β1 level increased gradually with the progressive severity of liver damage in 89 cases with mild, moderate, and severe chronic HBV infection. TGF-β1 can promote ECM synthesis and deposition, which is a pivotal factor for inducing liver fibrosis. Thus, it plays a key role in chronic HBV infection-induced liver inflammation and fibrosis. At present, many studies have also examined the molecular structure of TGF-β1 to define the relationship between TGF-β1 and HBV from a perspective of gene polymorphisms [84]. However, many of the results are inconsistent and unsatisfactory because of ethnic and geographical differences and case selection bias. The only consistent finding is that these gene polymorphism sites are mainly located in the promoter and control regions.
4.2.4. MicroRNAs

MicroRNAs (miRNA) are small single-stranded RNAs with a final length of 20–23 bases. miRNAs are generally transcribed from non-coding regions of cellular genes. In 1993, a miRNA was first detected in Caenorhabditis elegans, and then in humans, plants, and other organisms. miRNAs are non-coding RNAs, but with regulatory functions at the mRNA and protein translational levels. miRNA regulation contributes to the control of physiological processes such as cell growth, differentiation, and apoptosis, lipid metabolism, and hormone secretion. In recent years, many studies have shown that a variety of human tumors are associated with aberrant expression of miRNAs. For instance, miRNA-221 is upregulated in pancreatic cancer. miRNA normally participates in the maintenance of cell homeostasis by regulating the target mRNA and its translation. Studies have indicated that miRNA expression is altered during cancer development. Abnormal expression of multiple miRNAs was detected in HCC cells. Furthermore, miRNA-199a-3p and miRNA-210 can effectively reduce the expression of HBsAg in HBV infection, indicating that miRNAs can not only regulate tumorigenesis but also mediate the interaction between the virus and the host [85]. However, no significant differences in miRNA expression were found between cirrhosis and HCC patients, suggesting that the abnormal expression of miRNAs already occurred in the early phase of the process. Changes in miRNA expression are presumed to be an initiating factor. However, the underlying mechanisms have yet to be clearly elucidated. There are two opinions: the most popular opinion is that miRNAs can degrade target mRNA molecules by complementary binding to the 3ʹ-end of the untranslated region (UTR) of the target mRNA. The other opinion is that miRNAs inhibit translation of the target mRNA to reduce the protein level of the targeted gene. Due to the fact that miRNAs are small molecules, lack immunogenicity, and exhibit diverse regulatory functions at the mRNA and protein translational levels, miRNAs directly degrade specific mRNAs. miRNAs can be used as a molecular tool to target HBV RNA to inhibit the HBV lifecycle. However, a challenge is that a single miRNA can have multiple targets, and this multi-specificity for target genes may limit the clinical application of a given miRNA.
4.3. Immune Checkpoints

Immune checkpoints refer to a homeostatic function of the immune system and are responsible for the balance of co-stimulatory and co-inhibitory signals [86]. Under normal physiological conditions, immune checkpoints play an essential role in maintaining self-tolerance, whereas upon pathogen infection, they function to regulate the amplitude and duration of immune responses [87]. Tumor cells and viruses can take advantage of these immune checkpoint pathways and exploit them for immune evasion. The two major immune checkpoint targets, cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell-death protein 1 (PD1), both are negative immunomodulatory molecules and can inhibit T cell-mediated immune responses. Blocking of these two molecules is thought to prompt the immune system to regain strength to destroy the tumor cells. Ipilimumab (Yervoy; Bristol-Myers Squibb; Middlesex, UK), nivolumab (Opdivo; Bristol-Myers Squibb/Ono Pharmaceuticals; Middlesex, UK), and pembrolizumab (Keytruda; Merck & Co; Hertfordshire, UK.) are three immune checkpoint inhibitors currently approved for the treatment of malignant melanoma [86]. They are a CTLA-4- and PD1-specific monoclonal antibody and an anti-PD1 therapy, respectively. Expanding indications for other cancers and combination therapy [88] are the future directions for development of these drugs. In addition, a number of other immune checkpoint inhibitors are currently in the development pipeline [86].

However, the concept of blocking immune checkpoint inhibitors for HBV therapy is still in its infancy [89]. One important aspect is that blocking of immune checkpoint inhibitors should be a targeted therapy in order to avoid autoimmune-like side effects, as treatments targeting the T cell immunoglobulin-3 (TIM-3) pathway [90] and LTβR-mediated cccDNA degradation [49] do. Another important aspect is that the structural information and experimental data for the blocking agents should be understood as much as possible. The prospective from small molecules [91,92] and state-of-the-art technologies [93,94] can help to understand and expand the relevant knowledge. Therefore, based on oncological application (blocking agents) and the developing knowledge of immune checkpoint inhibitors, it is hoped that the application of certain blocking agents for treating chronic viral disease will not be too far in the future [89,95].

6. Conclusions

In summary, the number of patients chronically infected with HBV continues to grow, and chronic HBV infection can lead to cirrhosis and HCC, causing an unbearable burden to patients and society. Current antiviral therapies can potently inhibit HBV replication and improve liver pathology but are rarely able to clear chronic HBV infection. Both new antiviral strategies and drugs are urgently needed. Several new and encouraging drug candidates are under development, but much research is still needed before they can be applied clinically.
Acknowledgments

This study was supported by the Natural Science Foundation of China (No. 81470852), the Science and Technology Commission of Shanghai Science and Technology support project (No. 13431900503), the Medical and Technology Across project of Shanghai Jiao Tong University (No. YG2012MS02), and the Young Talents Plan of the Shanghai Health System (No. XYQ2013091).

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

2
发表于 2015-10-9 22:06 |只看该作者
病毒2015,7(9),4960-4977; DOI:10.3390 / v7092854
回顾
抗HBV药物:进度,未满足的需求,而新希望
雷康1,†,价签潘1,†,胶粉武2,佳丽胡锦涛3,孙茜1和京唐1,*
1
临床药学系,上海第一人民医院,上海交通大学,650新松江路,松江区,上海201620,中国; [email protected](L.K.); [email protected](J.P.); [email protected](适量)
2
药房,宁波市医疗中心Lihuili医院,兴宁路57号,宁波315040,中国; [email protected]
3
药剂科,宝钢集团,青年路15号,包头014010,中国的第三职工医院; [email protected]

这些作者同等贡献这项工作。
*
[email protected];电话:+ 86-21-3779-8317;传真:+ 86-21-3779-8605
学术编辑:大卫Boehr
收稿日期:2015年4月30日/接受:2015年8月24日/发布时间:2015年9月15日
摘要:全球大约有2.4亿人为慢性感染乙型肝炎病毒(HBV),它代表一个显著挑战公众健康。在治疗慢性HBV感染者目前的目标是阻止HBV相关性肝损伤和炎症到终末期肝病,包括肝硬化和肝细胞癌的进展,因为我们无法消除慢性HBV感染。可用于治疗慢性HBV感染者主要包括核苷/潮类似物(NAS),非NAS和免疫调节剂。但是,没有一个是能够​​清除慢性HBV感染。因此,新一代的抗HBV药物是迫切需要的。已经取得进展的开发和对慢性HBV感染的新疗法试验。这次审查的目的是总结本领域的新​​HBV药物的研究和开发的状态,并预测研究的发展趋势和方向,在不久的将来。
关键词:
乙型肝炎病毒;抗乙肝病毒药物;研究与开发;方针
3.3。中国传统医药
3.3.1。垂盆颗粒

垂盆颗粒来自于垂盆草的任一新鲜或干燥全植物,其属于景天家族。的有效药理成分调查表明,肝保护功能主要是基于megastigmane苷[28]的组分。使用动物肝损伤模型的试验表明,垂盆颗粒能降低血清ALT和天门冬氨酸转氨酶(AST)在动物急性肝损伤[29]的水平。在临床实践中,它主要用于治疗急性或慢性肝炎,尤其是患者的谷物丙转氨酶水平升高[30]。此外,垂盆颗粒甚至可以在抑制的状态,这是用于促进恢复从肝损伤关键上调细胞免疫。

目前,操作这种传统的中国医药和毒理学机理仍然是未知的,因此,合理的剂量也只能根据经验来确定根据病人的情况。
表表的抗乙肝病毒药物的结构1.概述。

点击此处显示表
3.3.2。氧化苦参碱

苦参碱,从草本植物苦参豆子大号中提取的生物碱,显示出在两个HBV转基因小鼠[36,37]和慢性HBV感染[38]一种抗HBV效果,如表1所示。Chen等人。 [36]和Lu等人。 [37]独立发现,苦参素能抑制血清转基因小鼠的HBsAg和HBcAg的在肝和HBV DNA水平。近日,一项临床研究[39]发现,氧化苦参碱与拉米夫定联合可预防拉米夫定耐药的慢性HBV感染者的发展。然而,抗病毒机制或氧化苦参碱对HBV的目标仍下落不明。 Xu等人。 [40]表明,苦参素可以与pgRNA的包装过程干扰进核衣壳或抑制病毒DNA聚合酶的活性。 Wang等人。 [41]研究发现,氧化苦参碱可与pgRNA反转录过程不稳定热应激同源70(Hsc70的)的mRNA干扰到DNA。

尽管氧化苦参碱提到20​​05年中国指导预防和慢性HBV感染[42]治疗,进一步长期的,多中心,随机和对照临床试验中有大量的案件都需要验证抗病毒疗效。
开发和评估下4.新的抗HBV药物
4.1。新的药物靶的病毒成分
4.1.1。 MCC-478

MCC-478,是阿德福韦酯衍生物,已在临床I期临床试验的安全性和疗效评估[43,44]。它的作用类似于其它品牌的NAS,可以通过抑制P蛋白包装反应抑制HBV的复制。 MCC-478可有效对抗野生型HBV和拉米夫定耐药突变[45,46]。
4.1.2。 cccDNA的

目前,在第一线的抗病毒治疗是NA为基础的治疗,以抑制HBV复制哪些功能。虽然新的cccDNA放大被抑制,肝细胞仍由于持续的cccDNA在细胞核中,通过易错病毒聚合酶[47]和耐药性突变体[48]逸出感染。因此,持续消除的cccDNA从感染的肝细胞是一项重大的挑战,一个可能的解决方案是免疫疗法,诸如细胞因子介导或免疫相关受体介导的cccDNA降解。

一个非常最近的一项研究Lucifora等。 [49]表明,高剂量的IFN-α可诱导的cccDNA根除在HBV感染的肝细胞。虽然已批准干扰素α治疗是有效的一些患者中,相对低的反应率[50],禁忌症,不太方便胃肠外给药[51],和某些严重的副作用[52]中的所有限制了其临床应用。因此,更好的治疗选择是替代受体介导的cccDNA降解。通过使用特异性抗体,淋巴毒素(LT)β受体(LTβR)活化也显示出诱导cccDNA的根除在HBV感染的肝细胞,而不会引起任何可检测hepatocytotoxicity。对于潜在的机制,LTβR的激活可以上调核APOBEC3的(A3)脱氨酶的表达,随后诱导脱氨和A purinic / A pyrimidinic(AP)的网站形成HBV cccDNA的,导致其降解,不会影响主机的基因组DNA。 A3A和A3B的A3家族成员,其位于细胞核[53],起到消除外来DNA [54,55]的至关重要的作用。它们可能被靶向的cccDNA通过它们与HBV核心蛋白相互作用,这表明选择性机构,用于从主机的基因组DNA区分的HBV cccDNA的。另外,IFN-α,发现诱导类似的效果,这表明,通过使用LTβR激动剂或过继性T细胞疗法的[56],受体介导的cccDNA退化,如果证实在临床试验中,可能会导致慢性HBV的间隙感染从肝脏。

此外,艾哈迈德等人。 [57]总结对cccDNA的生产目前的治疗策略。除了INF中和LTβR激动剂,因素(甲基化和乙酰化)影响的cccDNA转录和翻译和DNA裂解酶(锌指蛋白核酸酶和转录激活因子样效应物),其中中断的结构和/或功能的过程中cccDNA的,是一些其他可能的方法。
4.1.3。乙肝表面抗原基因

HBsAg的主要组成部分是小S蛋白与226个氨基酸。乙肝表面抗原诱发产生中和抗体。然而,乙肝表面抗原是压倒性产生并稳定地保持在慢性HBV感染的患者,这有助于一个HBV特异性免疫应答的抑制。除了免疫反应,HBsAg的需要用于组装病毒颗粒。一组研究人员[58]研究了通过微阵列分析含有转HBsAg基因细胞的细胞基因表达图谱。据发现,在1152基因分析,30分别显著上调,包括肿瘤坏死因子(TNF)相关的细胞凋亡诱导配体(TRAIL)受体,细胞分裂周期蛋白(CDC23),和FKBP相关蛋白(FAP48)。此外,29个基因显著下调,包括肿瘤坏死因子受体相关因子(TRAF),TNF受体相关蛋白(AD022),和TNF受体相关因子2(TRAF2)。这些基因影响细胞生长,细胞凋亡,信号转导,免疫调节和肿瘤发生。既向上和向下调节特定蛋白质的是参与细胞凋亡的过程中,这表明HBsAg的可能是参与细胞凋亡的调控。此外,HBsAg基因被认为参与在肝癌的发展。两者合计,这些研究结果表明的HBsAg为肝癌基因治疗的潜在靶标。
4.1.4。中国草药

Helioxanthin(HE-145)是一种arylnaphthalene配体从台湾杉隔离。 HE-145及其类似物5-4-2 [59],8-1 [60],32 [61],和15 [62]已经报道了表现出在体外有效的抗HBV活性。他们不仅抑制HBV的RNA和蛋白质的表达,而且还抑制野生型和拉米夫定耐药突变体的病毒DNA复制。作用模式涉及降低肝细胞的核提取物在乙肝病毒核心启动子的特定顺式元件DNA的结合活性,而顺式元件的异位表达解除这种抑制。因此,HE-145通过选择性调节主机转录机制[63]抑制HBV基因表达和复制。

HE-145类似物8-1 [60]通过在转录后降低临界转录因子中的HBV产生细胞中的表达,这降低了它们结合到前核心/核心启动子增强第二区域降低活性在所有的HBV启动子。因此,它阻止病毒基因的表达,以负病毒DNA复制的影响。

Pang等。 [64]发现,从蛇葡萄根(EASR)的乙醇提取物有效地通过选择性抑制的几个HBV启动子的活动和p53基因相关的信号传导途径抑制的HBsAg,HBeAg的,并在体外细胞外HBV DNA的水平。
4.2。新的药物靶细胞因子
4.2.1。乙肝病毒受体

乙型肝炎病毒包膜病毒包膜蛋白。乙肝病毒包膜蛋白不仅保护了病毒,但也令其感染,因为他们所需要的病毒侵入,发起HBV感染的第一步。病毒条目由肝细胞病毒包膜蛋白和受体之间的特异性相互作用介导的。有研究表明,乙肝病毒的L-蛋白的肉豆蔻酰化前S1域起着病毒感染性通过介导附着于肝细胞特异性受体[65,66]的关键作用。最近,假定的HBV受体之一被确定为牛磺胆酸钠cotransporting多肽(NTCP)[13]。 NTCP介导的HBV和HDV进入已经被其他组[67,68]独立证实。

NTCP代表治疗,可以阻止乙肝病毒进入发展的新目标。 Myrcludex-B,自HBV的前S1域序列衍生的合成脂肽,已经显示出特异性结合NTCP。它可以有效地阻断从头HBV感染和防止肝内病毒扩散在体外和体内[67,69]。此外,NTCP也可以用作肝胆汁酸转运介导大多数钠依赖性胆汁盐的摄取到肝细胞。岩等。 [68]发现,NTCP两个摄取功能似乎是互相排斥的,这意味着胆汁酸或它们的衍生物的摄取的调节会影响HBV的条目,对新型抗病毒药物发展的潜在的新策略。

NTCP的表达受到细胞调节。有人建议,维甲酸受体(RAR)规定的人NTCP(hNTCP)基因[70]的启动子活性。佃等。 [70]表明,一个RAR选择性拮抗剂Ro41-5253通过抑制hNTCP启动子活性降低细胞易感乙肝病毒感染。此外,IL-6,发现调节NTCP表达,和IL-6的对HBV条目的影响还指出。 Bouezzedine等。 [71]发现,NTCP mRNA的表达通过98%减少,以及一个下降80%NTCP介导的牛磺胆摄取和抑制90%的HBV的条目,在HepaRG细胞预处理与IL-6。这些研究结果需要进一步确认的更严格的感染系统。

都参与了乙肝病毒的生命周期的其它细胞因子包括Toll样受体(TLR)。 TLR是已知介导感染的先天免疫应答。 TLR的识别病原体相关的分子模式和通过激活一系列的抗病毒机制作出响应。中,TLR配体相互作用导致抗病毒分子的产生和释放,如干扰素,促炎性细胞因子,趋化因子和。然而,乙肝病毒可以破坏TLR的表达,阻碍细胞内信号级联作为一项战略以逃避慢性HBV感染的先天免疫反应。一个新兴的新的治疗策略涉及结合的抗病毒治疗用TLR激动剂用来恢复先天免疫应答的辅助治疗。 TLR配体,可激活TLR介导的先天性免疫应答可以代表有希望的佐剂的药物候选。矶川等人。 [72]发​​现,所有配体,除了一个用于TLR2,具体为TLR 2-5,7配位体后抑制HBV复制的干扰素α-和-β依赖性,和图9分别施用给HBV转基因小鼠,这表明配体的TLR相互作用能够引起有效的免疫应答以抑制病毒复制。

GS-9620,TLR7的的口服激动剂,进行了调查对于其安全性,耐受性,药动学,并在健康志愿者和丙型肝炎病毒(HCV)药效学 - 和HBV感染的病人。三I期临床试验已经完成[73,74,75]。 GS9620被良好吸收,并且耐受在口服剂量为0.3,1,2,4,6,8,12或每天毫克。所测试的剂量进行最终调节到0.3,1,2,和4毫克因为趋化因子/细胞因子和IFN刺激的基因(的ISG)可诱发剂量≥2毫克。最常见的不良反应是流感样症状,头痛。在健康志愿者中,最小的不利事件是类似与升高的血清的IFN-α水平相关的症状。在大多数HBV-和HCV感染患者的不良事件从轻微变化到中度和血清的IFN-α水平为16.7%(四十八分之八)和HCV和HBV的病人的12%分别变为可检测的。瞬时剂量依赖性诱导ISG15观察到,在48小时内达到高峰,并随后下降到基线水平在7天。然而,无论是在HCV感染患者的HCV RNA没有显著的变化,并在HBV感染患者的HBsAg和HBV DNA水平没有显著减少。

近日,张某等人。 [76]所述的TLR家族的一个亚组,并报告说,TLR3和TLR2 / 4介导的先天免疫反应可以控制HBV感染。 Kapoor等。 [77]概括在慢性HBV感染TLR7和TLR9的作用。
4.2.2。新目标:香格里拉蛋白抑制剂(HBSC11)

1α蛋白[78]是与47 kDa的分子量的磷蛋白。它最初被认为是患者的系统性红斑狼疮(SLE)和原发性干燥综合征(PSS)产生的自体抗原。现在,已知人类的La蛋白]是也参与了乙肝病毒的RNA代谢的多功能RNA结合蛋白。先前的研究表明,拉蛋白质具有抗HBV的保护效果,并且蛋白激酶CK2(酪氨酸蛋白激酶II)使拉蛋白在丝氨酸366,激活的La蛋白质的功能[79]被磷酸化。最近,在体外实验还表明,拉蛋白是乙肝病毒RNA的转录因子。它传送的HBsAg特异的细胞毒性T细胞(CLTS)对HBV感染的转基因小鼠的肝脏和降解的HBV的RNA,这导致了小鼠的La蛋白质[80]的消失。基于上面的La蛋白所描述的结果是参与病毒复制。研究人员利用虚拟筛选技术来过滤香格里拉蛋白结合,通过多层次的分子对接和目标筛选过程的网站。 HBSC11,一种新颖的抑制剂,针对人类蛋白质的La被证明具有抗HBV效果,通过使用规格数据库和实验室化学数据库。该体外验证表明HBSC11能够强效抑制的La蛋白[81]的转录和表达。
4.2.3。转化生长因子β(TGF-β)

的TGF-β超家族由一组生物活性多肽与相关结构和在调节细胞生长,分化,迁移,死亡和细胞外基质(ECM)的生产类似的功能的。因此,TGF-β可以调节生长和血管内皮细胞,炎性细胞的趋化,成纤维细胞增殖,致癌作用的分化,和ECM合成和降解。 Smad3蛋白,在Sm​​ads信号途径中的关键蛋白质,起着在TGF-β1通路,这是高度参与器官纤维化的调节了积极的作用。在一项临床研究[82]中,研究人员发现TGF-β1在肝癌组织中,通过免疫组化异常高的水平。此外,TGF-β水平升高在肝癌组织中,无论它们是否表示原发性或转移性癌症。此外,许多研究表明,TGF-β1是参与肝炎和肝纤维化的致病过程。

在TGF-β1表达的慢性HBV感染者的调查,彭等人。 [83]研究发现,血清TGF-β1水平逐渐与肝损害的严重程度逐步轻度​​,中度,重度慢性HBV感染增加了89例。 TGF-β1可以促进细胞外基质合成和沉积,这是用于诱导的肝纤维化的关键因素。因此,它在慢性HBV感染引起的肝脏炎症和纤维化的关键作用。目前,许多研究也检查TGF-β1的分子结构,以从基因多态性[84]的透视限定,TGF-β1和HBV之间的关系。然而,许多结果不一致且不能令人满意的,因为种族和地域的差异和病例选择偏倚。唯一一致的发现是,这些基因多态性位点主要分布在启动子和控制区。
4.2.4。微RNA

微RNA(miRNA)是小的单链RNA具有20-23个碱基的最终长度。的miRNA通常由细胞基因非编码区转录。在1993年,与miRNA首先在秀丽隐杆线虫检测到,然后在人类,植物和其它生物。的miRNA非编码RNA,但与在mRNA和监管功能蛋白翻译水平。 miRNA调节有助于生理过程,如细胞生长,分化和凋亡,脂质代谢,激素分泌的控制。近年来,许多研究表明,各种人类肿瘤的与miRNA的异常表达有关。例如,miRNA的-221被上调在胰腺癌。的miRNA通常通过调节靶mRNA及其翻译参与细胞稳态的维持。有研究表明,miRNA的表达是癌症发展过程中改变。在肝癌细胞中检测到多个miRNA的异常表达。此外,miRNA的-199A-3P和miRNA-210可以有效地减少的HBsAg在HBV感染的表达,表明miRNA能够不仅调节肿瘤发生,还介导病毒与宿主[85]之间的相互作用。然而,肝硬化和肝癌患者之间发现miRNA表达无显著差异,表明miRNA的异常表达已发生的过程的早期阶段。变化miRNA表达被推定为起始因子。然而,基本的机制尚未清楚地阐明。有两种意见:最流行的观点是,miRNA能够降解通过互补的靶mRNA分子结合靶mRNA的非翻译区(UTR)的3'末端。另外的观点是,miRNA的抑制靶mRNA的翻译,以减少靶基因的蛋白质水平。由于这样的事实,miRNA是小分子,缺乏免疫原性,并在mRNA和蛋白翻译水平表现出不同的调节功能,miRNA的直接降解特定的mRNA。的miRNA可以作为一个分子工具靶向HBV RNA的抑制乙肝病毒的生命周期。然而,一个挑战是,一个单一的miRNA可以有多个目标,并且这种多特异性的靶基因可以限制在给定miRNA的临床应用。
4.3。免疫检查点

免疫检查点指的是免疫系统的内环境稳定功能,并且负责共刺激和共抑制信号[86]的平衡。在正常生理条件下,免疫检查点在维持自身耐受至关重要的作用,而在病原体感染,它们的功能调节免疫反应[87]的幅度和持续时间。肿瘤细胞和病毒可以利用这些免疫检查点途径的优势,并利用它们的免疫逃避。两个主要免疫检查点的目标,细胞毒性T淋巴细胞抗原4(CTLA-4)和程序性细胞死亡的蛋白1(PD1),两者都是负的免疫调节分子,并且可以抑制T细胞介导的​​免疫反应。阻挡这两个分子被认为是促使免疫系统恢复强度破坏肿瘤细胞。易普利姆玛(Yervoy;施贵宝公司;米德尔塞克斯,英国),nivolumab(Opdivo;施贵宝/小野制药,米德尔塞克斯,英国)和pembrolizumab(Keytruda;默克公司;英国赫特福德郡)三种免疫检查点抑制剂目前被批准用于恶性黑素瘤[86]的治疗。它们是一个CTLA-4-和PD1特异性单克隆抗体和抗PD1疗法,分别。扩大适应症其他癌症和联合治疗[88]对这些药物的发展方向。此外,一些其他免疫检查点抑制剂是目前在发展管道[86]。

然而,阻断免疫检查点抑制剂乙肝治疗的概念仍处于起步阶段[89]。一个重要方面是,阻断免疫关卡抑制剂应该是靶向治疗,以避免自身免疫样副作用,作为治疗靶向T细胞免疫球蛋白3(TIM-3)途径[90]和LTβR介导的cccDNA降解〔 49]做的。另一个重要的方面是,对于该封端剂的结构信息和实验数据应被理解为尽可能。从小分子[91,92]和国家的最先进的技术[93,94]准可以帮助理解和扩大相关知识。因此,根据肿瘤的应用程序(阻断剂)和免疫检查点抑制剂的发展知识,希望某些阻断剂的应用治疗慢性病毒疾病也不会在将来[89,95]太远。

6.结论

总之,慢性乙型肝炎病毒感染患者人数不断增加,以及慢性HBV感染可导致肝硬化和肝癌,造成难以承受的负担,给患者和社会。目前的抗病毒治疗可有效抑制病毒复制,改善肝组织病理,但很少能够清除慢性HBV感染。目前迫切需要这两种新的抗病毒策略和药物。一些新的和令人鼓舞的候选药物正在开发中,但大量的研究仍然需要,他们可以在临床应用之前。
致谢

这项研究是由中国自然科学基金(81470852号)的支持,对上海科技支撑项目的科学技术委员会(13431900503号),医疗技术在整个上海交通大学工程(第YG2012MS02 ),与上海卫生系统(第XYQ2013091)的青年人才计划。

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30437 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

3
发表于 2015-10-9 22:07 |只看该作者

Rank: 10Rank: 10Rank: 10

现金
20661 元 
精华
帖子
12793 
注册时间
2013-12-29 
最后登录
2024-11-2 
4
发表于 2015-10-10 12:47 |只看该作者
本帖最后由 newchinabok 于 2015-10-10 12:48 编辑

对全部乙肝新药和tkmr新药的认识

大家想想,假设全部新药都失败了,这种情况出现的概率会不会产生

tkmr六种药全失败了,会不会产生这种概率,

我认为5-10年内应该是有1-3个新药产生,大家是不是有希望呢?

Rank: 10Rank: 10Rank: 10

现金
20661 元 
精华
帖子
12793 
注册时间
2013-12-29 
最后登录
2024-11-2 
5
发表于 2015-10-10 13:05 |只看该作者
本帖最后由 newchinabok 于 2015-10-10 13:06 编辑

我对杨梅公司(tkmr)预言,至少有一个新药成功,从概率上赌

Rank: 6Rank: 6

现金
1594 元 
精华
帖子
1280 
注册时间
2014-9-16 
最后登录
2020-10-20 
6
发表于 2015-10-10 20:26 |只看该作者
成功的概念是指什么?

进步还是突破?

有效?显效?特效?

Rank: 5Rank: 5

现金
424 元 
精华
帖子
332 
注册时间
2012-1-2 
最后登录
2017-11-21 
7
发表于 2015-10-10 21:27 |只看该作者
操他哥地,老夫居然全文阅读,全英文,居然读懂了。老子92大学毕业。
哈哈,基本不需要汉语就能读懂病毒学文章了。
想想够悲哀的。

Rank: 6Rank: 6

现金
1904 元 
精华
帖子
1665 
注册时间
2011-11-30 
最后登录
2024-5-14 
8
发表于 2015-10-10 22:39 |只看该作者
回复 高高山顶立 的帖子

久病成医吧,至少做个明白人,不被庸医骗子所乘。
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册

肝胆相照论坛

GMT+8, 2024-11-2 22:32 , Processed in 0.014984 second(s), 11 queries , Gzip On.

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.