15/10/02说明:此前论坛服务器频繁出错,现已更换服务器。今后论坛继续数据库备份,不备份上传附件。

肝胆相照论坛

 

 

肝胆相照论坛 论坛 学术讨论& HBV English 慢性乙型肝炎:1股新疗法
查看: 13372|回复: 15
go

慢性乙型肝炎:1股新疗法   [复制链接]

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

1
发表于 2015-7-3 05:44 |只看该作者 |倒序浏览 |打印
Chronic hepatitis B: A wave of new therapies on the horizon[url=]
Show more[/url]

doi:10.1016/j.antiviral.2015.06.014Get rights and content
Highlights•

This articles introduces a symposium marking the 50th anniversary of the discovery of the Australia antigen.

Current antiviral therapies for chronic hepatitis B suppress viral replication, but rarely eradicate the virus.

The persistence of viral cccDNA in the nucleus of hepatocytes is the principal obstacle to curative therapy.

Many new treatment approaches are now under development, and some may be more effective in eliminating cccDNA.

As for hepatitis C, optimal therapy for hepatitis B may consist of a combination of drugs with different targets.



Abstract

This year marks the 50th anniversary of the discovery of the Australia antigen (Blumberg et al., 1965), which in 1968 was identified to be the hepatitis B virus (HBV) surface antigen. Even though several antiviral medications have been in use for the management of chronic HBV infection for more than 20 years, sustained clearance of HBsAg, similar to the sustained viral response (SVR) or cure in chronic hepatitis C (HCV), occurs in only a minority of treated patients. Moreover, even after 10 years of effective suppression of HBV viremia with current therapy, there is only a 40–70% reduction in deaths from liver cancer. Recent success in developing antivirals for hepatitis C that are effective across all genotypes has renewed interest in a similar cure for chronic HBV infection. In this article, we review a wave of newly identified drug targets, investigational compounds and experimental strategies that are now under clinical evaluation or in preclinical development. The paper forms part of a symposium in Antiviral Research on “An unfinished story: From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B.”


Keywords
  • Hepatitis B virus;
  • Chronic hepatitis B;
  • Antiviral therapy;
  • Clinical trials

This year marks the 50th anniversary of the discovery of the Australia antigen (Blumberg et al., 1965), which in 1968 was identified to be the hepatitis B virus (HBV) surface antigen. Even though several antiviral medications have been in use for the management of chronic HBV infection for more than 20 years, sustained clearance of HBsAg, similar to the sustained viral response (SVR) or cure in chronic hepatitis C (HCV), occurs in only a minority of treated patients. Moreover, even after 10 years of effective suppression of HBV viremia with current therapy, there is only a 40–70% reduction in deaths from liver cancer. Recent success in developing combination antiviral therapies for hepatitis C that are effective across all genotypes has renewed interest in a similar cure for chronic HBV infection.

This article introduces a symposium in Antiviral Research on “An unfinished story: From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B.” This collection of some 15 invited papers describes a wave of newly identified drug targets, investigational compounds and experimental strategies that are now under clinical evaluation or in preclinical development. In this article, we provide a general overview of these new approaches, and refer readers to papers in the symposium in which additional information on each type of novel therapy can be found.

1. Introduction

More than 350 million people are chronically infected with hepatitis B virus (HBV), with some 600,000 deaths per year attributed to the virus (El-Serag and Rudolph, 2007 and Kanwal et al., 2015). Chronic HBV infection is associated with significant morbidity and mortality, secondary to acute and chronic hepatitis, fibrosis, cirrhosis, end-stage liver diseases and primary hepatocellular carcinoma (HCC) (see forthcoming review by Gish et al. in this symposium). It is estimated that, if left untreated, approximately 15–25% of chronically infected individuals would develop liver cirrhosis and HCC, after decades of infection (Block et al., 2007 and Block et al., 2003). Although the precise mechanisms involved in the virus-mediated pathology are not completely known, it is generally assumed that suppression of HBV replication and antigen production is beneficial. Indeed, there is now considerable evidence that suppression of HBV DNA replication can arrest, and even reverse liver fibrotic disease and decrease the incidence of HCC (Bedossa, 2015, Lok, 2004 and Lok and McMahon, 2009).

The first drug to be approved for managing chronic HBV infection was interferon-α2b (Intron A®), in 1991. Since then, seven drugs have been approved, the most recent being tenofovir disoproxil fumarate (Viread®) in 2008 (Hoofnagle et al., 2007) (Fig. 1). Broadly, these drugs can be classified as either host-targeting antivirals (HTA) or direct-acting antivirals (DAA) (Fig. 2). HTAs target host gene products, while DAAs target viral gene products.

Fig. 1.

Time-line of approval of hepatitis B therapeutics by the US Food and Drug Administration. Green: immunomodulators (interferons); blue: direct-acting antivirals (polymerase inhibitors).


Figure options


Fig. 2.

Categorization of therapeutics for management of chronic HBV infection. Direct-acting antivirals (DAAs) interfere with a specific step in viral replication. Host-targeted antivirals (HTA) inhibit viral replication by modifying host cell function.


Figure options


To date, the only approved HTAs are the interferons, and there are two approved for use in the United States: interferon-α2b (Intron A®) and peginterferon-α2a (Pegasys®). The pegylated form of interferon-α is considered to be an improvement over the non-pegylated form, with a decreased renal clearance rate, longer half-life, and increased bioavailability, thereby reducing the number of times per week that it needs to be injected, to once weekly. However, pegylated interferon-α showed no improvement in the side-effects profile caused by the first-generation interferon-α (Chae and Hann, 2007).

There are currently five approved DAAs for chronic hepatitis B in the US, all of which are nucleot(s)ide analogues: lamivudine (Epivir-HBV®), adefovir dipivoxil (Hepsera®), entecavir (Baraclude®), telbivudine (Tyzeka™) and tenofovir disoproxil fumarate (Viread®). All of them inhibit the reverse transcriptase/polymerase activity, resulting in a decrease in viral replication as measured by reductions in serum HBV DNA (see review by Gish et al. in this symposium). Use of the current therapeutics has been widely reviewed (Hoofnagle et al., 2007, Liaw et al., 2008 and Lok and McMahon, 2009). Many other DAAs and HTAs can be contemplated (Fig. 3).


Fig. 3.

Major intracellular steps in the HBV life cycle for which DAAs or HTAs could be developed. Each step is discussed in this review, and novel therapies targeting many of them are the subject of articles in this symposium.


Figure options


Is a cure for hepatitis B possible? Hepatitis C patients are now routinely cured of their chronic viral infection with the use of combination all-oral DAA regimens or DAA regimens in combination with pegylated interferon, with or without ribavirin. Current HCV combination regimens can achieve an off-therapy sustained viral response at 12 weeks post completing therapy (SVR 12) in ∼90–100% of patients, across all genotypes and all stages of chronic hepatitis C (Hoofnagle and Sherker, 2014). It is often reasoned that management of chronic HBV infection is likely to be more refractory than chronic HCV infection, because HBV persists with a nuclear phase, and can reactivate, even after decades of indolence (Hoofnagle, 2009, Lok et al., 2012 and Seto et al., 2014) or with immunosuppression. This is mainly due to the presence of covalently closed circular DNA (cccDNA) of HBV present in the nucleus of infected hepatocytes (see forthcoming review by Guo and Guo in this symposium). cccDNA is a highly stable structure that acts as a minichromosome for all HBV transcripts. HBV also appears to be less responsive than HCV to interferons (Aspinall et al., 2011, Brouwer et al., 2015, Chan et al., 2011 and Locarnini, 2004). However, the most effective management of chronic HCV infection today is with interferon-free, all-oral DAA regimens (Afdhal et al., 2014, Curry et al., 2015 and Kowdley et al., 2014).

Complete suppression of the HBV polymerase should, in theory, reduce viremia and intrahepatic levels of replicative forms of HBV DNA to zero, and even cccDNA should be eliminated, as the infected cells are eventually replaced (Block et al., 2013). Therefore, according to this model, people with chronic HBV infection should be cured with DAAs alone. However, this has not been the case with most patients. Perhaps complete inhibition of the HBV polymerase has not been routinely achieved, since the degree of suppression of viral replication has been inadequate. We note that the most impressive and curative hepatitis C suppression has not been achieved with single DAAs, but with powerful combinations that target different steps in the viral replication cycle ( Kowdley et al., 2014 and Pawlotsky, 2014). However, combinations for HBV that are curative or even reliably superior to monotherapy have not been demonstrated with current medications, and even the most effective currently available DAAs for HBV do not drive intrahepatic levels of HBV DNA down by more than 2 log10 (despite 5–10 log10 reductions in serum viremia) ( Block et al., 2013, Lau et al., 2005, Lee et al., 2013, Pellicelli et al., 2008, Werle-Lapostolle et al., 2004 and Yang et al., 2012).

The sustained, and substantial, intra-hepatic HBV DNA levels, even after more than a year of >5 log10 reductions in viremia, suggest that the current polymerase inhibitors are not inhibiting the enzyme by more than 99%. Thus, although these reductions in viremia are very impressive, they are still incomplete. Enzyme inhibition principles dictate that every additional ten-fold suppression in polymerase activity will require significantly greater amounts of inhibitor. However increasing the amounts of currently used polymerase inhibitors may not be safely tolerated in humans. The current polymerase inhibitors were optimized, and dosed to reduce serum HBV DNA levels to below the limits of detection, but not intra-hepatic viral DNA. Perhaps, if there were more potent polymerase inhibitors, or alternative means to decrease intra-hepatic levels of HBV DNA, including cccDNA, it would be possible to cure people with chronic HBV infection, with DAAs, in the same way that HCV is currently cured. In this review, we consider this possibility and identify several DAAs that might serve as alternatives or be complimentary, as part of new combination regimens, to the current portfolio of approved single-agent medications.

But how effective are current therapies for chronic hepatitis B? Clinically, chronically infected individuals have been divided into two groups, based on the presence or absence of the HBV gene product, HBeAg, which is derived from the capsid protein gene (Ganem and Prince, 2004 and Hoofnagle et al., 2007). Although the significance of these subcategories continues to be debated, HBeAg-positive individuals generally have greater serum viral loads. Clinical trials have customarily aimed to sero-convert HBeAg-positive individuals into becoming HBeAg-negative, and HBe-antibody (HBeAb) positive (Gish et al., 2010 and Hoofnagle et al., 2007). Both interferons and polymerase inhibitors are able to achieve HBeAg/Ab sero-conversion in approximately one-third of cases (Gordon et al., 2014 and Lok and McMahon, 2009). These also represent the subset of those experiencing viremia reduction, which is routinely achieved in almost everyone treated with polymerase inhibitors. Indeed, at least 90% will have serum HBV DNA levels reduced by 4–6 orders of magnitude, often reaching undetectable or nearly undetectable levels by current methods (Liaw and Crawford, 1999, Liaw et al., 2004 and Zeisel et al., 2015). However, reductions of intrahepatic viral DNA are far more modest, usually only 2 log10, even after two years of treatment, and this may be responsible for sequelae of virus reactivation and promote persistent liver disease (Lok, 2011, Zoulim and Durantel, 2015 and Zoulim and Locarnini, 2009).

Currently, the treatment of chronic hepatitis B must be life-long for the majority of patients, because virus rebound occurs, often within weeks to months after cessation of treatment (Cho et al., 2014 and Yuen and Lai, 2011). More concerning, even after 5–10 years of viremia suppression, the reduction in deaths due to liver disease is only 40–70% (Arends et al., 2014, Chang et al., 2006, Gordon et al., 2014, Lok, 2011 and Yapali et al., 2014). Finally, current recommendations advise therapy only for those with elevated viremia and serum transaminases, leaving at least half of patients at significant risk of liver disease without any medical options (EASL, 2012, Liaw et al., 2012, Lok and McMahon, 2009, Uribe et al., 2014 and Yapali et al., 2014). New approaches are clearly needed.

2. A new wave of hepatitis B therapies

In addition to the currently approved interferons and nucleot(s)ide inhibitors, there is the possibility of developing new agents to inhibit viral replication, with mechanisms of action that have not yet been explored. As shown in Fig. 3, a number of critical steps in the HBV life cycle can potentially be targeted to decrease HBV replication. These steps use both host pathways/proteins and HBV-specific proteins, so that new HTAs and DAAs could be developed. In the following sections, we briefly profile several promising investigational HTAs and DAAs under clinical development, many of which target steps in the HBV life cycle not previously exploited. We also refer readers to symposium articles in which each novel approach to therapy is reviewed. Readers may also wish to see a review by Liang et al. (Hepatology, accepted).

The most immediate new wave of therapies is likely to come from investigational agents currently in later stages of clinical development. As shown in Fig. 4A and B, using publically available sources such as scholarly publications, the US government website www.clinical trials.gov, and individual pharmaceutical company websites, we found at least 38 new investigational agents under development for the management of chronic hepatitis B, of which 19 have reached human trials. Of the 38 investigational agents, we have designated 21 as DAAs and 17 as HTAs. The latter can be further sub-categorized as either immunomodulators (HTA-i) or targeting other host functions (HTA-hf) needed by the virus. Of the 19 drugs reported to have reached human trials, 3 have failed or been discontinued for commercial reasons. When we were unable to determine a drug’s status, it is designated “status uncertain”.

Fig. 4.

Therapeutics in development for the management of chronic HBV infection. (A) Investigational agents in Phase 1 clinical trials at the time of writing this review. The NCT number (wherever applicable) after the company’s name is the clinicaltrials.gov identifier. (B) Investigational agents in preclinical stages. The stage of development is indicated, from in vitro identification through animal efficacy and ultimately human clinical trials. DAAs are highlighted in green and HTAs in blue. Investigational agents that have failed or have been stopped are shown in red. See text for citations. When we were unable to find a published reference, we cite the sponsor’s website.


Figure options



3. Direct-acting antivirals3.1. New investigational agents now in clinical trials3.1.1. Prodrugs of HBV polymerase inhibitors

Prodrugs are chemical or molecular precursors of active drugs (Hostetler, 2009 and Smith, 2007). Typically, a prodrug is designed to improve the performance of the active drug substance, usually by decreasing toxicity, improving solubility, enhancing tissue absorption and/or increasing the half-life, so that the agent can be dosed no more frequently than once daily. Thus, as long as the prodrug can be efficiently and safely converted to the active agent, it may have better efficacy and safety profile. Prodrugs that reduce toxicity and improve pharmacokinetics are certainly welcome, although their contributions to care may be more incremental than transformational due to the persistence of cccDNA in the nucleus of infected hepatocytes and incomplete inhibition of HBV polymerase.

Prodrugs of tenofovir are in the most advanced stages of development (Fig. 4A). As mentioned, earlier, the five approved polymerase inhibitors are currently used at doses that impressively reduce viremia, but have a much more modest impact on intracellular HBV DNA levels (Lau et al., 2005, Peters et al., 2004 and Werle-Lapostolle et al., 2004). These drugs achieve effective suppression of viremia by 5–9 log10 or greater, but intrahepatic HBV viral DNA, although reduced, remains at significant levels. These reduced levels of replication are apparently sufficient to restore nuclear pools of cccDNA through intracellular recycling of nucleocapsids, even in people for who are serologically “PCR negative” (aviremic) for HBV.

That said, if a prodrug of a polymerase inhibitor could be safely used at higher doses or could achieve increased bioavailability of the active compound within hepatocytes, so as to achieve greater inhibition of the HBV polymerase, it could have a greater than incremental value. Indeed, since current polymerase inhibitors are associated with the loss of HBsAg and the appearance of HBsAb in as many as 10% of those treated over 5 years (Zoulim and Durantel, 2015), it is possible that a prodrug that inhibits intra-hepatic DNA replication could significantly increase seroconversion. Several prodrugs at various clinical stages of development target the HBV polymerase.

3.1.1.1. AGX1009 and TAF

AGX1009 (Agenix) and TAF (Gilead), are prodrugs of tenofovir in Phase 3 clinical trials, although TAF is in Phase 3 for HIV indications and Phase 1/2 for hepatitis B (Menendez-Arias et al., 2014). They are predicted to have reduced long-term toxicity compared to Tonofovir.

3.1.1.2. Besifovir, elvucitabine, pradefovir mesylate & MIV210

Besifovir (LBO80380/ANA380) 9-[1-(Phosphonomethoxycyclopropyl) methyl] guanine (PMCG) by Idong Pharma (Korea) is in Phase 3 clinical trial (Yuen et al., 2010). Achillion’s elvucitabine is a l-cytosine nucleoside analog reverse transcriptase inhibitor that demonstrated potent antiviral activity against HBV and HIV. Phase 2 clinical studies showed that elvucitabine is well tolerated in patients with chronic HBV infection, with an antiviral potency is similar to that of lamivudine (Achillion Pharmaceuticals, 2010). No information is available regarding the efficacy of elvucitabine against lamivudine resistant HBV.

On the other hand, pradefovir mesylate, a propylated adefovir that depends upon CYP3A mediated activation, looked promising in Phase 2 studies, but was put on hold because of tumor formation in animals (Reddy et al., 2008). The development of MIV210 (Michalak et al., 2009) has also been abandoned (Grogan, 2013). Thus, even for prodrugs that have an established mechanism of action that is clearly beneficial, it is impossible to predict the “winners and losers” prior to preclinical and/or clinical evaluation.

3.1.1.3. CMX157

CMX157 (Chimerix/Contravir) is a lipid conjugate (hexadecycloxypropyl adenine) of tenofovir diphosphate that was designed to exploit lipid uptake pathways (Painter et al., 2007). CMX 157 delivers tenofovir diphosphate at high concentration in the hepatocytes, thus increasing the bioavailability of tenofovir diphosphate and at the same time decreasing circulating tenofovir levels to minimize potential renal side effects (Contravir). It has utility for both HIV and HBV, and is now entering Phase I/2 clinical trials for HBV.

3.1.2. siRNA

In principle, siRNA-acting drugs, which target HBV transcripts, should be able to shut down all HBV gene product production. This approach has had great promise, but has been frustrated by the inefficiency in delivery of the nucleic acid oligomers to human hepatocytes, despite extremely compelling results in experimental animals (Wooddell et al., 2013). Thus, if the delivery problem could be solved, the potential for siRNA and similar nucleic acid-directed suppressive molecules, is tremendous. It is with this hope and expectation, that a new wave of siRNA molecules is greeted (see forthcoming review by Gish and colleagues in this symposium).

3.1.2.1. ARC-520

ARC-520 is the siRNA from Arrowhead, which is lipid conjugated and uses nanoparticle-assisted delivery system. ARC-520 demonstrated good efficacy in reducing the levels of serum HBsAg, HBeAg and HBV DNA levels, in non-transgenic mouse model for HBV infection (Wooddell et al., 2013). It also showed promising results in HBV-infected chimpanzee model system. ARC-520 reached Phase 2 trials, but was placed on a clinical hold, and only recently it has been allowed to proceed with the Phase 2 studies (Arrowhead, 2015a).

3.1.2.2. ALN-HBV, TKM HBV

The ALN-HBV by Alnylam and TKM-HBV by Tekmira use lipid nanoparticle technology for delivering their siRNA. The Alnylam siRNA candidate demonstrated significant suppression of circulating HBV DNA and HBsAg levels in chimpanzee model system (Alnylam, 2014). The siRNA therapeutic candidates from these companies will have reached clinical phase by the time of this review’s publication. The Tekmira siRNA agent is likely to be in at least Phase 1 clinical trial. Thus, despite recent reports of disappointing Phase 2 results for the Arrowhead compound (Arrowhead, 2015b and Wooddell et al., 2013) it still appears that, after the prodrugs, the siRNA technologies are the furthest along in development.

3.1.3. HBsAg-reducing agents

RepA9, from Replicor, is a nucleic acid-based polymer (NAP), comprised of phosphorothioated nucleic acids (Noordeen et al., 2013) (see forthcoming review by Vaillant and colleagues in this symposium). The sponsor reports that the agent is safe, and in small overseas human trials in Bangladesh, to have beneficial activity in combination with interferons or Zadaxin (Mahtab and Vaillant, 2015). The mechanism of action is unclear, but the sponsor reports it acts on HBsAg. As stated, compounds that act on HBsAg are particularly interesting because they also have the potential for direct activity against hepatitis delta virus (HDV), since HDV infection is dependent upon the HBsAg (Seeger and Mason, 2000).

3.1.4. Inhibitors of capsid formation

Of the DAAs that have reached clinical phase, at least three inhibit the formation of the HBV capsid. Since the first report of a capsid inhibitor more than 10 years ago (Stray et al., 2005, Stray and Zlotnick, 2006 and Weber et al., 2002), there have been a number of new examples of this approach (see forthcoming review by Zlotnick et al. in this symposium). Capsid formation is an essential viral process that does not occur in the uninfected cell, and thus would be expected to provide a virus-selective target. Moreover, capsid proteins are readily detected in the nucleus of infected cells, far from the site of nucleocapsid formation in the cytoplasm. This is consistent with evidence that capsid proteins play a role in regulating HBV cccDNA expression and stability, as well as in regulating host innate immune response genes. Therefore, even though investigational agents may have a phenotypically similar effect on capsid assembly, they may modulate these other processes differently, thus affecting the overall ability of the agent to manage chronic HBV infection.

Three capsid inhibitors have reached clinical phase development: BAY4109 (AiCuris), NV1221 (Novira) and GLS 4 (Sunshine).

3.1.4.1. BAY4109

The capsid inhibitor BAY4109 came on the scene with a great deal of fanfare, as an innovative, first in class capsid inhibitor (Deres et al., 2003 and Weber et al., 2002). It is reported to be highly species specific, for the virus, with activity against only the human HBV. This rendered pre-clinical efficacy testing more limited, since testing in woodchucks would not be possible, as it does not have activity against WHV. It was evaluated in Phase 1 clinical trials but its current development status is unclear.

3.1.4.2. NV1221

In the US, the Novira agent, NV1221, is probably the most advanced of the new capsid inhibitors, now in Phase 1 studies in New Zealand. There is no structural or specific functional information available about the compound, but it appears to prevent HBV capsid formation in a way analogous, but (importantly) not identical to the BAY4109.

3.1.4.3. GLS-4

GLS4 is a heteroaryl pyrimidine analogue that was derived from BAY4109 after structural optimization. GLS4 has a unique mechanism of action by which it causes aberrant capsid protein formation. GLS 4 was shown to inhibit nucleoside-analogue resistant HBV mutants in preclinical studies (Wang et al., 2012 and Wu et al., 2013). HEC pharma group reports that Phase 1 studies of GLS4 are completed (HEC).

3.2. Direct-acting antivirals in preclinical development3.2.1. Inhibitors of capsid morphogenesis

Preclinical phase capsid inhibitor candidates include CpAMs (Assembly Biosciences), DVR (Oncore-Tekmira), and DSS (Oncore-Tekmira). All these capsid inhibitors are small molecules that interfere with HBV capsid morphogenesis, but not necessarily at the same step. CpAMs are HBV core protein allosteric modulators that accelerate a dysfunctional capsid protein dimerization (Katen et al., 2013). DVRs prevent the association of HBV pregenomic RNA with the capsid (Campagna et al., 2013). The mechanism of action of the DSS compounds is not yet reported (Cai et al., 2012).

3.2.2. Inhibitors of HBsAg secretion

The development and current status of inhibitors of HBsAg secretion are reviewed by Cuconati and colleagues in a forthcoming article in this symposium. TTP is a small molecule that has been shown to prevent the secretion of HBsAg and viral DNA in vitro, possibly by interfering with the ability of HBsAg to associate with the LDL secretion machinery ( Dougherty et al., 2007 and Yu et al., 2011). HBsAg may also have immunosuppressive functions ( Jaroszewicz et al., 2010 and Xu et al., 2009). The TTPs are at an early preclinical stage of development, but are the only small molecule inhibitors of HBsAg secretion.

3.2.3. RNase H inhibitors

Unlike other DNA viruses HBV replication depends upon the RNAseH activity of HBV polymerase to degrade pregenomic RNA (Seeger and Mason, 2000). RNAseH enzymatic activity should, in principle, be a viable antiviral target as is the reverse transcriptase/DNA polymerase activity of HBV polymerase. A group in St Louis University (Cai et al., 2014 and Tavis and Lomonosova, 2015) has reported identifying “hit” compounds, some based on those that are validated HIV drugs, that are selective inhibitors of the HBV polymerase RNAseH activity (see review by Tavis and Lomonosova in this symposium). These compounds need further development and could be a welcome addition to the HBV antiviral arsenal. They can prove be very effective when used in combination with the existing nucleot(s)ide analogues and may help to achieve long-term inhibition of HBV replication at a level that is not achieved by current nucleot(s)ide analogues alone.


3.2.4. CRISPR/Cas9 system

The bacterial clustered regularly interspaced short palindromic repeats associated systems (CRISP/Cas9) loci encode RNA guided endonucleases, derived from bacterial immune response against foreign genetic elements such as bacteriophages (Kennedy et al., 2015 and Seeger and Sohn, 2014) and have been adapted for mammalian systems (see forthcoming review by Cullen and colleagues in this symposium). In principle, they can be used to target destruction of specific DNA sequences, and thus hold a great potential for specific degradation of HBV cccDNA. The challenges of getting these complex systems into hepatocytes, let alone into the nucleus, are clear. However, lentiviruses expressing CRISPR/Cas9 guide RNAs that are specific for HBV DNA have been transduced into HBV cccDNA-producing cells and shown to be suppressive (Dong et al., 2015, Kennedy et al., 2015 and Lin et al., 2014). HepG2 cells expressing the receptor were infected with HBV and the CRISPER/Cas9 system was used to induce degradation of cccDNA. This also suggested that the targeted DNA is degraded rather than repaired following Cas9 nuclease digestion. Thus, there is some progress with these systems, although clinical investigation is probably a long way off due to the difficulties in the delivery process.

3.2.5. siRNA

ddRNAi from Benitech is another therapeutic approach to directly target HBV transcripts using RNA interference technology. This program was initiated by Benitech in 2009 and is currently in preclinical stages. The studies are being conducted in collaboration with Chinese-based “Biomics biotechnologies”, and are aimed at targeting HBV polymerase transcript using three different short-hairpin RNA (shRNA) to target different regions of the polymerase transcript (Biopharma).

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

2
发表于 2015-7-3 05:45 |只看该作者
慢性乙型肝炎:地平线上的一股新疗法

    蒂莫西·M. Blocka,悉达多Rawata,卡罗尔L. Brosgartb

显示更多

        DOI:10.1016 / j.antiviral.2015.06.014
    获取权利和内容

亮点



    该文章介绍了研讨会标志着澳大利亚抗原的发现50周年。


    慢性乙型肝炎抗病毒电流抑制疗法病毒复制,但很少根除病毒。


    病毒的cccDNA在肝细胞的细胞核的持久性是根治性治疗的主要障碍。


    许多新的治疗方法目前正在开发,有的可能更有效地消除cccDNA的。


    当用作丙型肝炎,乙型肝炎最佳治疗可能包括药物与不同的靶的组合。

抽象

今年是澳大利亚抗原的发现50周年(布隆伯格等人,1965年),在1968年被确定为乙型肝炎病毒(HBV)表面抗原。尽管几个抗病毒药已使用用于治疗慢性HBV感染超过20年的管理,持续间隙的HBsAg,类似于在慢性丙型肝炎(HCV)的持续病毒学应答(SVR),或治愈,发生在仅一个少数治疗的患者。此外,即使经过10年的乙肝病毒血症与当前治疗有效的抑制,只有一个在肝癌死亡减少40-70%。开发能有效在所有抗病毒药物的基因型丙型肝炎最近成功续签类似的治疗慢性HBV感染的兴趣。在这篇文章中,我们回顾了一股新发现的药物靶点,研究化合物和实验的战略,现在在临床评价或处于临床前开发的。该文件形成了在抗病毒研究的专题讨论会的一部分,“一个未完成的故事:从澳大利亚抗原的发现到新的治疗疗法为乙型肝炎发展”
关键词

    乙型肝炎病毒;慢性乙型肝炎;抗病毒治疗;临床试验

今年是澳大利亚抗原的发现50周年(布隆伯格等人,1965年),在1968年被确定为乙型肝炎病毒(HBV)表面抗原。尽管几个抗病毒药已使用用于治疗慢性HBV感染超过20年的管理,持续间隙的HBsAg,类似于在慢性丙型肝炎(HCV)的持续病毒学应答(SVR),或治愈,发生在仅一个少数治疗的患者。此外,即使经过10年的乙肝病毒血症与当前治疗有效的抑制,只有一个在肝癌死亡减少40-70%。在开发的丙型肝炎是在所有基因型的有效结合抗病毒治疗最近成功续签类似的治疗慢性HBV感染的兴趣。

本文介绍了抗病毒研究专题讨论会“一个未完成的故事:从澳大利亚抗原的发现到新的治疗疗法为乙型肝炎发展”的15篇论文邀请这一系列描述了一股新发现的药物靶点,研究性化合物和实验策略是目前正在临床评估或处于临床前开发。在这篇文章中,我们提供了这些新方法的概述,并参考读者在论文研讨会,其中对每种类型的新型疗法的附加信息可以找到。
1.简介

超过3.5亿人为慢性感染乙型肝炎病毒(HBV),以每年约60万人死亡归咎于病毒(埃尔 - Serag和鲁道夫,2007年和坎瓦尔等,2015)。慢性HBV感染与显著的发病率和死亡率,继发于急性和慢性肝炎,肝纤维化,肝硬化,终末期肝病和原发性肝细胞癌(HCC)有关(见即将审查基希等人在本次研讨会)。据估计,如果不进行治疗,慢性感染的个体的约15-25%的人会发展为肝硬化及肝细胞癌,几十年来感染后(框等,2007,和Block等,2003)。虽然涉及的病毒介导的病理的确切机制并不完全清楚,但一般认为HBV复制的抑制和抗原生产是有利的。事实上,现在有相当多的证据HBV DNA复制的抑制可以逮捕,甚至逆转肝纤维化疾病,降低肝癌(Bedossa,2015年,乐,2004年和乐和麦克马洪,2009年)的发生率。

第一种药物被批准用于管理慢性HBV感染的干扰素α2B(内含A®),于1991年。从那时起,7种药物被批准,最近的一次是富马酸替诺福韦酯(Viread®)2008年(胡夫纳格尔等,2007)(图1)。概括地说,这些药物可分为主机靶向抗病毒药(HTA)或直接作用的抗病毒药物(DAA)(图2)。 HTA的目标主机基因产物,而目标的DAA病毒基因产物。

全尺寸图片(13 K)
    图。 1。

    时间线由美国食品和药物管理局批准的乙肝治疗的。绿色:免疫调节剂(干扰素);蓝:直接作用抗病毒药物(聚合酶抑制剂)。
    图选项

全尺寸图片(42 K)
    图。 2。

    分类治疗的慢性HBV感染的管理。直接作用的抗病毒药物(的DAA)干扰病毒复制的特定步骤。通过修改宿主细胞功能的主机有针对性的抗病毒药物(HTA)抑制病毒复制。
    图选项

迄今为止,唯一被批准的HTA是干扰素,有批准在美国使用二:干扰素α2B(内含A®)和聚乙二醇干扰素-α2A(Pegasys®)。 α干扰素的聚乙二醇化形式被认为是经过改良的非聚乙二醇化形式,与降低肾清除率,半衰期较长,并增加生物利用度,从而减少了每星期的次数,它需要被注入,以每周一次。然而,聚乙二醇化α干扰素表现出的副作用没有改善个人资料,由第一代的α干扰素(蔡和汉恩,2007)。

目前在美国的慢性乙肝五项批准的DAA,所有这些都nucleot(S)类似物:拉米夫定(拉米-HBV®),阿德福韦酯(Hepsera®),恩替卡韦(Baraclude®),替比夫定(Tyzeka™ )和富马酸替诺福韦酯(Viread®)。所有这些抑制逆转录/聚合酶活性,如通过降低血清HBV DNA测定导致病毒复制的减少(参见审查基希等人在此讨论会)。使用目前的治疗剂已被广泛地综述(胡夫纳格尔等人,2007年,廖等人,2008年,和乐和麦克马洪,2009)。许多其他的DAA和HTA的可以考虑(图3)。

全尺寸图片(77K)
    图。 3。

    在乙肝病毒生命周期内的主要步骤的DAA或HTA的可开发哪些。每一步都在本次审查讨论,并针对其中许多新疗法是在本次研讨会上的文章的主题。
    图选项

是治疗乙肝可能吗?丙型肝炎患者现在经常治愈他们的慢性病毒感染与使用相结合的全口DAA方案或方案DAA与聚乙二醇干扰素,有或无利巴韦林的组合。当前的HCV组合疗法可以实现关断治疗的患者~90-100%持续病毒反应在12周后完成治疗(SVR 12),在所有基因型和慢性丙型肝炎的所有阶段(胡夫纳格尔和Sherker,2014年)。人们常常推测,慢性HBV感染管理可能比慢性HCV感染更多的难治,是因为乙肝病毒持续进行核阶段,可以重新激活,即​​使经过几十年的懒惰(胡夫纳格尔,2009年,乐等人,2012年和濑等人,2014年),或与免疫抑制。这主要是由于共价闭合环状DNA乙肝病毒(cccDNA的)存在于受感染的肝细胞的细胞核(见郭郭在本次研讨会即将召开的审查)的存在。 cccDNA的是一种高度稳定的结构,它作为一个微染色体对所有的HBV转录物。乙肝病毒也似乎比丙型肝炎病毒干扰素来响应少(阿斯皮诺尔等人,2011年,布劳威尔等人,2015年,成龙等人,2011年和Locarnini,2004)。然而,慢性HCV感染当今最有效的管理与干扰素免费的,所有的口服DAA方案(Afdhal等人,2014年,库里等人,2015年和Kowdley等人,2014年)。

HBV聚合酶的完全抑制应,在理论上,降低病毒血症和HBV-DNA的复制形式肝内的水平到零,甚至cccDNA的应该被消除,作为感染的细胞最终取代(Block等,2013年)。因此,根据这一模型,患有慢性HBV感染者应治愈单独的DAA。然而,这还没有与大多数患者的情况。 HBV聚合酶的也许完全抑制尚未常规实现中,由于抑制病毒复制的程度是不充分的。我们注意到,最令人印象深刻和治疗丙型肝炎的抑制尚未实现单的DAA,但与靶向病毒复制周期不同阶段的组合功能强大(Kowdley等人,2014年和Pawlotsky,2014年)。然而,有疗效,甚至可靠优于单药治疗组合HBV尚未证实与目前的药物,即使是最有效的当前可用的DAA为HBV不开车HBV DNA下降的水平肝内超过2 LOG10(尽管5- 10日志10降低血清病毒血症)(Block等,2013年,刘等人,2005年,李某等人,到2013年,Pellicelli等人,2008年,Werle-拉波斯托勒等人,2004年,杨等人, 2012)。

持续,实质性,肝内HBV DNA水平,即使经过一年多的> 5日志10降低病毒血症,表明当前的聚合酶抑制剂不超过99%的抑制酶。因此,尽管这些减少的病毒血症是非常令人印象深刻,他们仍然是不完整的。酶的抑制原理决定了每增加十倍抑制聚合酶活性需要显著更大量的抑制剂。然而越来越多的目前使用的聚合酶抑制剂的用量可能无法安全耐受人类。当前聚合酶抑制剂进行了优化,并给药降低血清HBV DNA水平低于检测限,但不能肝内病毒DNA。或许,如果有更有效的聚合酶抑制剂,或降低的HBV DNA的肝内的水平的替代方式,包括cccDNA的,这将是可能治愈人慢性HBV感染,具有的DAA,以同样的方式对HCV目前固化。在这次审查中,我们考虑这种可能性,并确定可作为替代品或者是免费的几个的DAA,作为新的组合治疗方案的一部分,已批准单剂药物的目前的投资组合。

但如何有效的是目前的治疗慢性乙肝?在临床上,慢性感染的个体已被分成两组,基于所述HBV的基因产物,e抗原,它是从衣壳蛋白基因衍生的存在或不存在下(Ganem和王子,2004和胡夫纳格尔等人,2007)。虽然这些子类别的意义,仍然备受争议,HBeAg阳性的个体通常具有更大的血清病毒载量。临床试验已经习惯旨在血清转换HBeAg阳性个体入成为HBeAg阴性,和抗HBe抗体(抗 - HBe)阳性(基希等人,2010和胡夫纳格尔等,2007,)。这两种干扰素和聚合酶抑制剂能够实现e抗原/抗体的血清转换在大约三分之一的病例(Gordon等,2014年和乐和麦克马洪,2009年)。这也代表了那些经历病毒血症减少,这通常是在几乎所有人都与聚合酶抑制剂治疗取得的子集。的确,至少90%将具有血清HBV DNA水平降低幅度4-6订单,通常达不到或几乎检测不到的水平由现有的方法(廖和克劳福德,1999,廖等人,2004和Zeisel等人, 2015年)。然而,肝内病毒DNA下降是更为温和,通常只有2日志10,即使经过两年的治疗,这可能是负责病毒激活的后遗症,促进持续性肝病(乐,2011年,Zoulim和Durantel,2015年Zoulim和Locarnini,2009)。

目前,慢性乙型肝炎的治疗必须终身为广大患者,由于病毒反弹出现,往往是在几个星期到几个月停止治疗后(Cho等人,2014年和元朗和Lai,2011)。更令人关注的,即使经过5 - 10年病毒血症抑制,在因肝病死亡人数的减少是只有40-70%(ARENDS等人,2014年,张等人,2006年,戈登等人,2014年,乐,2011年和Yapali等人,2014年)。最后,目前的建议提醒疗法只对那些与提高的病毒血症和血清转氨酶,​​造成至少一半的患者在肝病显著风险没有任何医疗选项(EASL,2012年,廖等人,2012年,乐和麦克马洪,2009年,乌里韦等人,2014年和Yapali等人,2014年)。显然需要新的方法。
乙肝的治疗2.新一波

除了目前已批准干扰素和nucleot(多个)的ide抑制剂,有开发新的药剂,以抑制病毒复制,具有动作的尚未被探索机制的可能性。如图。 3,一些在HBV生命周期的关键步骤可以潜在地靶向减少HBV复制。这些步骤使用两个主机途径/蛋白和HBV特异性蛋白,使新HTA的和的DAA可以发展。其中有许多在下面的章节中,我们简要概况几个有前途的研究性卫生技术评估和下的DAA临床开发,目标在乙肝病毒生命周期的步骤以前没有利用。我们还指读者座谈会文章中,每个新的方法来治疗审查。读者可能也希望看到一个审查良等人。 (肝病,接受)。

治疗的最直接的新浪潮可能目前来自研究性药物的临床开发的后期阶段。如图。 4A和B,使用公开可用的来源,如学术出版物,美国政府网站www.clinical trials.gov,和个人的制药公司的网站,我们发现正在开发至少有38个新研究性药物治疗慢性乙型肝炎的管理,其中19已经达到了人体试验。 38研究性药物,我们已指定21的DAA和17 HTA的。后者可以进一步亚分类为免疫调节剂(HTA-i)或靶向所需的病毒其他主机的功能(HTA-HF)。 19药品报道已经达到人体试验中,有3出现故障或已经停产的商业理由。当我们无法确定药物的地位,它被指定为“不确定状态”。

全尺寸图片(144 K)
    图。 4。

    在治疗发展为慢性HBV感染的管理。 (一)研究性药物在一期临床试验,在写这篇评论的时候。 NCT的数量(如适用)该公司的名称后是clinicaltrials.gov标识符。 (二)在临床前阶段的研究性药物。发展阶段被指示,从体外识别通过动物疗效和最终的人体临床试验。的DAA在蓝绿色和HTA的高亮显示。出了故障或已经停止研究性药物以红色显示。见文本引用。当我们无法找到一个出版参考,我们举了赞助商的网站。
    图选项

3.直接作用抗病毒药物
3.1。现在,新的研究性药物的临床试验
3.1.1。乙肝病毒聚合酶抑制剂前药

前药是活性药物(霍斯泰特勒,2009年和Smith,2007)的化学或分子的前体。通常情况下,前药的目的是改善活性药物物质的性能,通常是通过降低毒性,提高溶解性,增强组织吸收和/或增加半衰期,使药剂可以每日一次不更频繁给药比。因此,只要前药可以有效地和安全地转化为活性剂,其可具有更好的疗效和安全性。前药降低毒性,提高药物代谢动力学当然欢迎,但他们的贡献,以照顾可能比转型更增量由于cccDNA的在感染的肝细胞和HBV聚合酶抑制不完整的细胞核的持久性。

替诺福韦的前体药物正在开发的最先进的阶段(图4A)。如上所述,所说,五批聚合酶抑制剂是目前使用的剂量下,令人印象深刻的降低病毒血症,但对细胞内HBV DNA水平一个温和得多的影响(Lau等,2005,Peters等人,2004和Werle-拉波斯托勒等人,2004)。这些药物血症实现有效的抑制5-9日志10或更高,但肝内乙肝病毒DNA,虽然减少,保持在显著的水平。复制这些水平降低显然是经过充分回收利用细胞内的核衣壳,恢复cccDNA的核武器库,即使是在人们对于谁是血清学“PCR阴性”(aviremic)乙肝。

这就是说,如果一个聚合酶抑制剂的前药,可以安全地使用较高剂量或可实现的肝细胞内的活性化合物的增加的生物利用度,从而达到更大的抑制HBV聚合酶的,它可能有一个比增量值越大。实际上,由于电流聚合酶抑制剂与HBsAg的损失和乙肝表面抗体在多达10%的处理过的5年以上(Zoulim和Durantel,2015)的外观相关联,它是可能的前药抑制肝内的DNA复制可能显著增加血清转换。几位前体药物处于不同发展阶段的临床针对HBV聚合酶。
3.1.1.1。 AGX1009和TAF

AGX1009(Agenix)和TAF(Gilead公司),是替诺福韦的3期临床试验的前体药物,虽然TAF是在第3阶段为艾滋病适应症和1/2期乙型肝炎(梅嫩德斯 - 阿里亚斯等人,2014年)。它们的预测相比Tonofovir具有降低长期毒性。
3.1.1.2。 Besifovir,elvucitabine,甲磺酸pradefovir&MIV210

Besifovir(LBO80380 / ANA380)9- [1-(Phosphonomethoxycyclopropyl)甲基]鸟嘌呤(PMCG)由Idong制药(韩国)在三期临床试验(Yuen等,2010)。 ACHILLION的elvucitabine是一个升 - 胞嘧啶核苷类似物逆转录酶抑制剂,表现出抗HBV和HIV的抗病毒活性。 2期临床研究表明,elvucitabine的耐受性良好的慢性HBV感染,具有抗病毒效力类似于拉米夫定(艾琪尔顿制药,2010)。没有信息可供有关elvucitabine的功效对拉米夫定耐药HBV。

另一方面,pradefovir甲磺酸盐,一个丙基化阿德福韦即取决于CYP3A介导的活化,看上去有希望在第2阶段的研究中,但被投入由于肿瘤形成的动物上保持(Reddy等人,2008)。 MIV210的(,2009年Michalak的等)的发展也被抛弃(格罗根,2013年)。因此,即使对于有一个既定的作用机制,这显然是有益的前体药物,它是无法预测的“赢家和输家”之前,临床前和/或临床评价。
3.1.1.3。 CMX157

CMX157(Chimerix / Contravir)是被设计为利用脂质摄取途径替诺福韦二磷酸的脂质缀合物(hexadecycloxypropyl腺嘌呤)(画家等人,2007)。 CMX 157提供替诺福韦二磷酸在高浓度中的肝细胞,从而增加替诺福韦二磷酸的生物利用度,并在同一时间减少循环泰诺福韦水平,以减少潜在的肾副作用(Contravir)。它具有实用性为HIV和HBV,并正进入第一阶段的HBV I / 2的临床试验。
3.1.2。的siRNA

原则上,siRNA的作用药物,靶向的HBV转录物,应该能够以关闭所有的HBV基因产物的生产。这种做法有很大的希望,但已经受挫交付核酸寡聚体对人体肝细胞的低效率,尽管极具吸引力的结果对实验动物(Wooddell等,2013)。因此,如果在输送问题可以解决,对于siRNA和相似的核酸定向抑制性分子的潜力,是巨大的。正是凭借这种希望和期待,一个新的siRNA分子的波迎接(看到基希和他的同事在本次研讨会即将进行的检讨)。
3.1.2.1。 ARC-520

ARC-520是所述siRNA慈姑,这是脂质缀合,并使用纳米粒子辅助的输送系统。 ARC-520表现出良好的疗效,降低血清HBsAg,HBeAg和HBV DNA水平的水平,在非转基因小鼠模型HBV感染(Wooddell等,2013)。这也显示出可喜的成果在HBV感染的黑猩猩模型系统。 ARC-520达到了2期临床试验,但被置于临床搁置​​,直到最近它已被允许继续进行第二阶段的研究(箭头,2015a)。
3.1.2.2。 ALN-HBV,HBV TKM

该ALN-HBV由Alnylam公司和TKM-HBV通过Tekmira利用脂质纳米粒技术,提供他们的siRNA。该Alnylam公司的siRNA候选证实循环HBV DNA和HBsAg水平在黑猩猩模型系统(Alnylam公司,2014年)的显著抑制。从这些公司的siRNA治疗的候选人将在本次审查的出版的时间已经达到临床阶段。所述Tekmira的siRNA剂很可能是在至少第1阶段临床试验。因此,尽管令人失望的第2阶段的结果为慈姑化合物最近的报道(箭头,2015B和Wooddell。等,2013年)它仍显示的是,前药后,所述siRNA技术是沿着在发展中的最远。
3.1.3。乙肝表面抗原还原剂

RepA9,从Replicor,是基于核酸的聚合物(NAP),由S代核酸(Noordeen等,2013)(见由威能和他的同事在本次研讨会即将进行的检讨)。保荐人报告说,代理是安全的,并在孟加拉国海外小型人体试验,以在与干扰素或日达仙(Mahtab和威能,2015年)的组合有利的活动。作用的机制尚不清楚,但发起人报告它作用于HBsAg的。如上所述,对HBsAg起作用的化合物是特别令人感兴趣的,因为它们也具有对针对丁型肝炎病毒(HDV)的直接活性的潜力,因为HDV感染是依赖于乙肝表面抗原(西格和Mason,2000)。
3.1.4。衣壳形成抑制剂

已达到临床阶段,所述的DAA的至少三个抑制乙肝病毒衣壳的形成。由于衣壳抑制剂超过10年前的第一次报告(杂散等人,2005年,流浪和Zlotnick,2006年和韦伯等人,2002年),已经出现了一些这种方法的新的例子(见即将进行的审查通过Zlotnick等人在本次研讨会)。衣壳形成是不发生在未感染的细胞,并因此将期望提供一种病毒选择性靶的必需病毒的过程。此外,衣壳蛋白可容易地在感染细胞的细胞核中检测到的,远离核衣壳形成在细胞质的部位。这与证据一致的衣壳蛋白在调节HBV cccDNA的表达和稳定性中发挥作用,以及在调节宿主先天免疫反应的基因。因此,即使研究性药物可能对衣壳包装一个表型相似的效果,它们可以调节这些其他工艺不同,从而影响剂来管理慢性HBV感染的总体能力。

三衣壳抑制剂已达到临床阶段的发展:BAY4109(AiCuris),NV1221(Novira)和GLS 4(阳光)。
3.1.4.1。 BAY4109

衣壳抑制剂BAY4109来到具有很大大张旗鼓的现场,作为一种创新,第一类衣壳抑制剂(例如Deres等人,2003年和韦伯等人,2002年)。据报道是高度种特异性,​​为病毒,与只针对人类HBV活性。此呈现的临床前功效测试更多的限制,因为测试在土拨鼠将是不可能的,因为它不具有活性抗WHV。它在第一阶段进行了评价临床试验,但其目前的发展状况还不清楚。
3.1.4.2。 NV1221

在美国,Novira剂,NV1221,可能是最先进的新衣壳抑制剂,目前在1期研究在新西兰。有可用的关于该化合物没有结构或特定的功能的信息,但它似乎防止的方式类似的HBV衣壳形成,但(重要的)不相同的BAY4109。
3.1.4.3。 GLS-4

GLS4是派生,从BAY4109结构优化后的杂嘧啶类似物。 GLS4有行动由它引起的异常衣壳蛋白形成一个独特的机制。 GLS 4被证明能够抑​​制在临床前研究核苷类似物耐药突变(Wang等人,2012年和Wu等,2013)。 HEC医药集团报告说,GLS4的第一阶段研究完成(HEC)。
3.2。在临床前开发直接作用抗病毒药
3.2.1。衣壳形态的抑制剂

临床前阶段衣壳抑制剂的候选人包括CpAMs(生物科学大会),DVR(Oncore-Tekmira)和DSS(Oncore-Tekmira)。所有这些衣壳抑制剂是小分子,乙肝病毒衣壳形态发生干涉,但不一定在相同的步骤。 CpAMs是乙肝病毒核心蛋白变构调节剂的加速功能失调衣壳蛋白二聚体(卡滕等,2013)。录像机防止HBV前基因组RNA的衣壳的关联(平原等人,2013年)。尚未报道的DSS化合物作用机制(Cai等,2012)。
3.2.2。乙肝表面抗原分泌抑制剂

发展与HBsAg分泌抑制剂的现状是由Cuconati和他的同事在即将文章中本次研讨会综述。 TTP是一种小分子已经显示出,以防止HBsAg和病毒DNA在体外的分泌,有可能通过用的HBsAg与低密度脂蛋白的分泌机器关联(多尔蒂等人,2007和Yu等人的能力的干扰。,2011 )。的HBsAg也可具有免疫抑制功能(Jaroszewicz等人,2010和Xu等人,2009)。该的TTP正处于发展的早期临床前研究阶段,但HBsAg的分泌只有小分子抑制剂。
3.2.3。核糖核酸酶H抑制剂

不同于其他DNA病毒HBV复制取决于HBV聚合酶的活性RNA酶H降解RNA前基因组(西格和梅森,2000年)。 RNA酶H的酶活性,原则,是一种可行的抗病毒靶作为是HBV聚合酶的逆转录酶/ DNA聚合酶活性。 A组圣路易斯大学(Cai等,2014年和塔维斯和Lomonosova,2015)报告确定“打”的化合物,一些基于那些有效的抗HIV药物,是HBV聚合酶RNA酶H活性的选择性抑制剂(见审查塔维斯和Lomonosova在本次研讨会)。这些化合物还需要进一步发展,可能是一个值得欢迎的除了乙肝病毒库。它们可以证明是非常有效的组合使用与现有nucleot(S)类似物时,并可能有助于实现长期抑制HBV复制的,而并非由当前nucleot(S)类似物来实现单独的水平。
3.2.4。 CRISPR / Cas9系统

细菌聚集定期相互间隔短回文重复相关的系统(CRISP / Cas9)位点编码RNA指导核酸内切酶,来源于对外国的遗传因子的细菌的免疫反应,如噬菌体(Kennedy等,2015年和西格和孙某,2014年),并已适用于哺乳动物系统(见由卡伦和他的同事在本次研讨会即将进行的检讨)。原则上,它们可以被用于靶向破坏特定DNA序列,并因此保持对乙肝病毒的cccDNA的特异性降解的巨大潜力。让这些复杂的系统为肝细胞,更不用说进入细胞核的挑战是显而易见的。然而,慢病毒表达CRISPR / Cas9导的RNA是特定的HBV DNA已经被转成乙肝病毒cccDNA的产生细胞,并证明是抑制(董等人,2015年,肯尼迪等人,2015年与林等人,2014年)。表达受体的HepG2细胞感染HBV和CRISPER / Cas9系统被用来诱导的cccDNA的降解。这也表明了有针对性的DNA降解,而不是修复以下Cas9核酸酶消化。因此,与这些系统取得了一些进展,但临床调查可能是一个很长的路要走,由于在分娩过程中的困难。
3.2.5。的siRNA

ddRNAi从Benitech是另一种治疗方法,直接使用靶向RNA干扰技术HBV成绩单。该方案是由Benitech于2009年启动,目前处于临床前阶段。该研究正在开展的合作与中国为基础的“生物技术Biomics”,并把矛头指向使用三种不同的短发夹RNA(shRNA)为目标的聚合酶成绩单(生物医药)的不同地区HBV聚合酶成绩单。

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

3
发表于 2015-7-3 05:47 |只看该作者
4. Host-targeting antivirals
4.1. Products in clinical development

Five HTAs appear to be in the clinical stage of development (Fig. 4), and two others have recently failed or been discontinued. Of the five still in development, two target host functions used by the virus (Myrcludex B, Brinapant), and the others target the host innate and adaptive immune systems (GS-4774, GS 9620, DV601 & SB9200HBV).
4.1.1. Viral entry inhibitors

Myrcludex B (MycB), a synthetic lipopeptide derived from the LHBs preS1 domain, is an entry inhibitor from Hepatera/Myr-GmbH. Viral entry inhibitors are a relatively new and effective antiviral drugs, with the HIV Trimeris Fuzeon being among the first (Lobritz et al., 2010). Neutralization of virions to prevent their association with target cells by neutralizing antibodies is well established as an approach. For HBV, the only example is Myrcludex B (MycB), a lipopeptide derived from the cell attachment region of the HBV large envelope protein (Gripon et al., 2005, Petersen et al., 2008 and Urban et al., 2014) Myrcludex B requires parenteral administration; this would be a drawback for clinical therapy. In Phase 2a clinical trial studies Myrcludex B demonstrated does dependent decline in the levels of HBV DNA in patients. Myrcludex B also showed promising results in phase 2a trial in patients with chronic hepatitis delta virus (HDV) infection. HDV uses HBV envelope proteins for hepatocyte entry and therefore if Myrcludex B is approved it can be used for treating both HBV and HDV chronic infections. (Hepatera, 2014 and Urban et al., 2014).
4.1.2. Immune enhancers

Four of the HTAs in clinical phase are immune enhancers. The mechanism of liver disease in people with chronic hepatitis B is fundamentally a chronic, but inadequate immunological and inflammatory attack on infected hepatocytes, resulting in liver damage (Ganem and Prince, 2004 and Seeger and Mason, 2000). A DAA alone may therefore not be sufficient; a durable, off-drug, antiviral response is therefore likely to require some type of immunological restoration of the affected individual. While it is hoped that complete suppression of antigenemia, as well as viremia, may unmask or enable an indolent or suppressed immune response (or perhaps “free up” neutralizing antibody that was otherwise complexed with antigen), some type of direct immunologic awakening of the host will be necessary (see review by Durantel and colleagues in this symposium).

Unfortunately, most attempts to stimulate the immune system in chronic HBV carriers to clear HBV have been disappointing, and have failed in human trials or had untoward clinical consequences, such as decompensation in those with advanced fibrosis or cirrhosis. Therefore there has been considerable interest in developing strategies that stimulate the host immune recognition of HBV, in chronic carriers, who usually can recognize the virus, at the cellular and humoral level, without clearing the infection (Bertoletti and Gehring, 2013).
4.1.2.1. YIC

YIC is comprised of HBsAg and HBIG, (anti-HBs Immunoglobulin) complex as a therapeutic agent candidate with alum as the adjuvant (Xu et al., 2008). The candidate reached phase III clinical trials in which the results were found to be unsatisfactory. Overstimulation with YIC was demonstrated to decrease the efficacy of YIC due to immune fatigue (Xu et al., 2013). Its continuation is therefore in doubt, representing a setback and disappointment for these alternative approaches once thought promising.
4.1.2.2. GS 9620

Toll-like receptor (TLR)-7 is a “pathogen recognition receptor” expressed mostly in lysosomal/endosomal compartments of plasmacytoid dendritic cells (pDCs) and B-lymphocytes that recognizes patterns in viral single-stranded RNA (O’Neill et al., 2013). There is a growing body of evidence that pattern recognition receptor activation can directly suppress HBV in infected cells (Chang et al., 2012) (see forthcoming review by Chang and colleagues in this symposium).

GS 9620 is a small-molecule TLR-7 agonist in clinical development ( Roethle et al., 2013). Phase 1b safety studies have been recently reported, showing the drug was safe and achieved expected induction of interferon stimulated genes in peripheral blood cells ( Gane et al., 2015). Indeed, GS9620 had significant activity in woodchucks and chimps, and would be a “first in class”, to show that pharmacological activation of pattern recognition receptor can have clinical benefit in the management of chronic HBV infection ( Lanford et al., 2013).
4.1.2.3. SB 9200

HBV replication is suppressed by activation of retinoic acid inducible gene-I (RIG I), which is stimulated by double-stranded RNA and the nucleotide binding oligomerization domain containing protein-2 (NOD-2) (Adam et al., 2002, Mao et al., 2011 and Sato et al., 2015). Agents that can activate RIG-I would therefore provide a new approach. SB 9200 from Spring Bank is reported on their web site to be a small molecule that activates host’s immune system by upregulating RIG I SB 9200 is currently in Phase 1 clinical trials (Springbank).
4.1.3. Therapeutic vaccines

The concept and current status of therapeutic vaccination for chronic hepatitis B are reviewed in a forthcoming article by Roggendorf and colleagues in this symposium.

DV601 (Dynavax) and GS4774 (Gilead Sciences) are both therapeutic vaccines candidates. GS4774 is a heat-killed vaccine engineered to express a fusion protein containing HBsAg sequences of four major genotypes while DV601 utilizes both core and surface antigens. Vaccine that produce or introduces HBsAg might appear to have limited logic, since people with chronic hepatitis B already have enormous amounts of HBsAg in their circulation. The hypothesis behind this approach is that therapeutic vaccines will induce specific T-cell responses, in the face of presumed T-cell exhaustion due to antigen excess, by either stimulating antigen presentation, or directing antigen presentation from professional antigen presenting cells ( Michel et al., 2015). Some of these challenges are discussed later in this review. As with any immune-enhancing approach, the limitations will most likely relate to toxicity and variable response in different patients.

To date, GS4774, produced from heat-inactivated yeast recombinant HBV antigens, has been evaluated in Phase 1 trials (Gaggar et al., 2014). The Dynavax therapeutic vaccine candidate, which includes phosphorothioate oligonucleotides as well as viral polypeptides, as immunostimulatory adjuvants, has also been shown to be safe and effective as an immunogen in Phase 1 studies (Halperin et al., 2006 and Plotkin and Schaffner, 2013). Since the initial safety trials of DV601, no development has been reported for the vaccine candidate (DYNAVAX, 2011).
4.1.4. Birinapant

Birinapant from Tetralogic Corp, is a small molecule that is believed to mimic second mitochondrial activator of caspases (SMAC) (Seigal et al., 2015). SMAC normally binds to IAP (inhibitor of apoptosis), pushing the cell towards apoptosis (Holohan et al., 2013).

Birinapant has already entered Phase 3 trials for management of myelodysplastic syndrome and colorectal cancer, so there is considerable safety and efficacy information available. The safety information on Birinapant is available from more than 300 patients enrolled in these trials (TetraLogic). For the management of hepatitis B, Birinapant is only in the preclinical phase, but was reported to cause impressive reductions of viremia in the circulation of infected mice (Ebert et al., 2015a, Ebert et al., 2015b and Peters et al., 2004). The mechanism of the antiviral affect was not clear, but it seems that infected cells are selectively eliminated, assuming that they are more sensitive to apoptotic stimuli, compared to the uninfected cells. The strategy is intriguing and the possibility of using such an approach to eliminate remaining infected cell “nests” following the reduction of infected cells with more conventional methods, is very compelling. On the other hand, for obvious reasons, in individuals with a substantial portion of the liver infected, such an approach must be taken cautiously, since the rapid destruction of infected cells can be dangerous.
4.1.5. Zadaxin

Zadaxin is a 28-amino-acid peptide based on thymosin-α, a natural polypeptide from the thymus (Tsai et al., 2003). It was reported to initially show promise, but there are studies demonstrating both favorable and unfavorable results (Wu et al., 2015). A randomized clinical trial conducted in China demonstrated that Zadaxin is safe, well tolerated and is effective in inhibiting HBV replication. Patients treated with Zadaxin had much higher rate of seroconversion as compared to the patients treated with IFN-α (You et al., 2001). In another clinical trial, HBeAg negative patients treated with Zadaxin in combination with IFN-α had much robust virological and biochemical response as compared to the patients treated with combination of lamivudine and IFN-α or IFN-α alone (Saruc et al., 2003). In contrast, Zadaxin in combination with lamivudine was not found to be any better than lamivudine alone (Lee et al., 2008). Thymosin-α also did not have any clear benefits when used in combination with IFN-α in another clinical trial (Yang et al., 2008). Subsequent studies showed that, in combination with lamivudine or interferon, Zadaxin added little to detectable benefit in chronically infected HBeAg-positive patients, on the grounds of antiviral efficacy, and interest has waned (Kim et al., 2012).
4.2. HTAs in the preclinical stage
4.2.1. Immune checkpoint inhibitors (PD-1)

Recent advancements in our understanding of immune exhaustion is generating a new hope for the immunological or host-targeted therapeutic strategies. We now have a greater understanding of the mechanisms by which some viral antigens, in chronic infection, are presented to the immune system that can result in the failure of the immune system to clear the virus. There are now several known pathways that lead to T-cell exhaustion and these pathways could be blocked to enhance T-cell responses.

For example, the programmed cell death (PD-1)/PD-1 ligand pathway plays critical role in antigen-mediated exhaustion of T-cells in several chronic infections, including HIV and hepatitis C (Bertoletti and Gehring, 2007, Bertoletti and Gehring, 2013, Bertoletti and Kennedy, 2014, Day et al., 2006 and Peng et al., 2008). In the hydrodynamic tail vein injection model system for HBV expression in C57BL mice (Tzeng et al., 2012), it was demonstrated that a PD-1/PD-L1 pathway inhibition with monoclonal antibody could reverse immune dysfunction and HBV viral persistence. PD-1 expression levels in HBV-infected patients have also been studied, and it was demonstrated that 70% of the circulating HBV-specific T-cells were PD-1 positive (Zhang et al., 2013).

Anti-PD-1 antibody has now been used effectively in human cancer therapy, and in trials for the management of chronic hepatitis C (Gardiner et al., 2013). However, there is no ongoing clinical trial involving PD-1 for the management of chronic HBV infection. This may be due to concerns about adverse effects of autoimmune type reactions. Thus, despite the theoretical appeal, and strong experimental evidence, PD-1-derived therapies for chronic hepatitis B may take some time to develop. However, other members of the PD-1-like superfamily of coreceptors may be important in regulating chronicity, and ultimately prove better therapeutic targets (Xing and Hogquist, 2012).
4.2.2. Therapeutic vaccines

Therapeutic vaccines have received a considerable amount of attention, and the clinical stage therapeutic vaccines for HBV have been discussed (above). Here we describe leading examples of preclinical technologies and their development status, when it could be confirmed.
4.2.2.1. Altravax DNA vaccine

Altravax’s therapeutic vaccine approach is to construct a chimera of wild-type and xenogenic HBs surface peptides, and subsequent inclusion of HBc peptides. This approach is based upon the hypothesis that the chimera will result in the presentation of novel epitopes by antigen presenting cells. These novel epitopes will beneficially stimulate the immune response in chronic HBV infection. C57BL/6 mice were immunized with the vaccine, and the T-cell responses elicited by the vaccine were reported to meet the expectations by the investigators (Altravax).
4.2.2.2. INO-1800

INO-1800 is a recombinant DNA vaccine from Inovio that encodes consensus sequence of HBV core antigen, which has induced antigen-specific strong T-cell responses and high antibody titers in preclinical trials (Obeng-Adjei et al., 2012). The vaccine also demonstrated strong cytotoxic T-cell response to kill target cells without causing considerable liver injury (Obeng-Adjei et al., 2012). The company has just initiated Phase1 trials for the vaccine (Inovio, 2015).
4.2.2.3. VLP

VLP Biotech is developing a virus-like particle (VLP) (Schickli et al., 2015), based on the HBV core antigen, modified and designed to elicit neutralizing antibodies to PreS1 (Whitacre et al., 2009).
4.2.2.4. Chimigen HBV/NU500

This investigational agent from Akshaya Bio (Canada) is a chimeric polypeptide comprised of regions of the core and surface antigen proteins and the Fc-binding domain of IgG. The hypothesis is that the Fc component will direct the chimeric protein to dendritic antigen presenting cells, and there will be enhanced presentation of HBV antigen. The concept is compelling, and in vitro and in vivo studies reported at professional conferences, suggest that this approach can induce robust immunological responses to the HBV antigens, in mice ( George, 2014). However, successful production and presentation of viral antigens may be insufficient to restore a meaningful host immunological response to HBV, since there may be an “afferent” defect in the immunologic response in all individuals with chronic hepatitis B, known as “immunological exhaustion”. As mentioned earlier, immune exhaustion due to the pathways such as PD-1/PD-1L might undermine the effects of enhanced antigen presentation.
4.2.2.5. Editopes

A novel method by which a small molecule can induce production of an HBsAg peptide bearing a novel epitope has been described (Norton et al., 2010). Briefly, imino sugar glucosidase inhibitors such as N-butyldeoxynojirimycin, which inhibit alpha-glucosidase 1, prevent the glycan processing of HBsAg (M) polypeptides, causing them to misfold and be degraded in the proteasomes (Norton et al., 2010 and Simsek et al., 2009). Prior to their degradation, the N-glycans on the HBsAg are removed from the polypeptide backbone by the action of PNgase, which hydrolyzes the asparagine linked to the N-glycan, resulting in its conversion into an aspartic acid. The proteolytic fragment of the HBsAg thus contains a CTL epitope that is not encoded by the HBV gene. Since this amino acid resides within a major CTL epitope, the new epitope, called an editope, contains an aspartic acid in place of an asparagine.

This suggests that animals (and presumably, humans) could be treated with the imino sugar, and immunized with the novel CTL epitope (editopes), and, ideally, would develop CTL responses that would attack the infected cells. The hypothesis was evaluated in woodchucks chronically infected with woodchuck hepatitis virus (WHV), and it was demonstrated that selective lymphocytic responses to the aspartic acid containing editope could be induced in a pharmacologically dependent manner (Norton et al., 2010). However, there was no detectable effect on viremia or antigenemia. Thus, despite an immunological proof of principle, this approach has not progressed further.
4.2.3. Epigenetic modifiers

Small-molecule histone deacetylase (HDAC) inhibitors have been shown to suppress cccDNA transcription in tissue culture, under non-cytotoxic conditions (Liu et al., 2013). At the same time, transcription from HBV DNA integrated into the host genome was enhanced, demonstrating that transcription from cccDNA is regulated differently than the transcription from the integrated genome. These results are particularly compelling, since there are several HDAC inhibitors in Phase 3 clinical studies for other diseases, and two are already approved for refractory cutaneous and peripheral T cell lymphoma (Khan and La Thangue, 2012 and West and Johnstone, 2014). The positive results of the use of HDAC inhibitors for suppressing cccDNA is therefore exciting, since two of them have already been approved for other indications, but of course, as with any host targeting agent, human use may pose risks.
4.2.4. Dimethylxanthenone STING agonists

The Stimulator of Interferon Genes (STING) is an adaptor polypeptide for several cytoplasmic DNA-sensing receptors, as well as a bacterial cyclic di-nucleotide second messenger and an intracellular moderator of innate immune responses (Cai et al., 2014). Stimulation of STING with small-molecule flavonoids effectively suppressed HBV replication in mouse hepatocytes. It was demonstrated that STING stimulation mainly induced type-1 IFN response, unlike the TLR agonist that induced inflammatory cytokines response (Guo et al., 2015). Importantly, it has been demonstrated that after less than 24 h of infection, STING agonists reduced the amount of HBV DNA in the blood of infected mice in a hydrodynamic tail-vein injection model (Guo et al., 2015).
4.2.5. Cyclophilin inhibitors

Cyclophilin inhibitors have been shown to have broad antiviral affects in clinical trials for hepatitis C (Membreno et al., 2013). The mechanism of action appears to involve an affect upon host protein-folding chaperones used in viral polypeptide function.

The cyclophilin inhibitors Alisporivir (formerly Debio 025) and Novartis compound NIM811 have both been reported to have inhibitory activity against HBV in tissue culture (Phillips et al., 2015). Oncore-Tekmira is now developing a cyclophilin inhibitor (OCB-030/NVPO19) for the management of chronic hepatitis B. Cyclosporin A, a chemical inhibitor of cyclophilin that binds and inhibits cyclophilin without any immunosuppressive effects, may also be important for inhibiting entry in hepatocytes (Nkongolo et al., 2014).
5. Conclusions

It has been 50 years since the discovery of the Australia antigen, but therapies that cure chronic HBV infection are still not available. In contrast, 25 years after the discovery of the hepatitis C virus, virtually all cases of chronic hepatitis C can now be cured through a short course of antiviral therapy (Ward, 2014). This dramatic success with hepatitis C has created excitement about the possibility of a cure for chronic hepatitis B, and many scientists are now moving to hepatitis B research. Coupled with the growing prominence of antiviral research in China and the rest of South Asia, where hepatitis B is prevalent (El-Serag, 2012), this has created a momentum of innovation in hepatitis B therapeutic strategies.

As discussed in this review, investigational agents currently in the advanced stages of clinical development are the prodrugs that have promise to improve upon the existing therapies by increasing efficacy and decreasing the side-effects. Investigational agents such as siRNA, HBsAg inhibitors and capsid inhibitors that have reached clinical trials, have different mechanism of action as compared to the current therapies. The new delivery technologies such as lipid nanoparticles have breathed new life into the siRNA approach. New technologies for discovery, screening and profiling, have also made possible the development of many investigational agents in the pre-clinical phase of development that use novel and previously unexplored areas of HBV biology. These include entry inhibitors, use of novel chimeric epitopes, selective killing of infected hepatocytes and novel therapeutic vaccines. There is a hope that these investigational agents that use novel mechanisms for inhibiting HBV replication, used alone or in combination with the existing therapies would help in better management of chronic hepatitis. The great challenge is to decrease intrahepatic viral DNA levels and to eliminate cccDNA. Candidate therapies such as siRNA hold promise to do that by eliminating HBV transcripts, eventually leading to loss of cccDNA, over a period of time, and therefore the results from the clinical trials are awaited. In addition to the DAAs, it is thought that agents that can boost the immune response against the virus can play an important role in sustained off drug virological responses. Therefore new HTAs in development, such as therapeutic vaccines, PD-1/PD-1ligand pathway inhibitors, novel chimeric antigens, enhancement of antigen presentation, might be beneficial.

That said, to date there are still only two families of drugs to treat chronic hepatitis B, the interferons and the polymerase inhibitors. But this is clearly going to change. Based on some of the investigational agents in the pipeline that we describe in this review, we predict that within five years there will be at least two new drugs approved for management of chronic hepatitis B, and within ten years, there should be functional cures.
Acknowledgements

The preparation of this manuscript was supported in part by funding from NIH grant RO1 AI104636, by the Baruch S. Blumberg Institute and by the Commonwealth of Pennsylvania.

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

4
发表于 2015-7-3 05:47 |只看该作者
4.主机靶向抗病毒药物
4.1。在临床开发产品

五HTA的似乎是在发展中(图4),临床分期,和另外两个人最近失败或已经停产。五仍然在发展中,所用的病毒(Myrcludex B,Brinapant)两个目标主机的功能,和其他人的目标主机先天免疫和适应性免疫系统(GS-4774,GS 9620,DV601和SB9200HBV)。
4.1.1。病毒进入抑制剂

Myrcludex B(MycB),从LHBs的前S1域衍生的合成脂肽,是从Hepatera /秘耳-GmbH的一个条目抑制剂。病毒进入抑制剂是一个相对较新的,有效的抗病毒药物,与艾滋病Trimeris公司FUZEON是其中的第一个(Lobritz等人,2010)。病毒粒子,以防止与靶细胞的关联通过中和抗体的中和是公认的一种措施。 HBV的,唯一的例子是Myrcludex B(MycB),从HBV大包膜蛋白的细胞附着区域衍生的脂肽(Gripon等人,2005年,Petersen等人,2008和城市。等,2014年)Myrcludex B需要胃肠外给药;这将是一个缺陷,为临床治疗。在2a期临床试验研究Myrcludex乙证实的确在HBV DNA患者的水平依赖性下降。 Myrcludex B也可以显示出可喜的成果在阶段2a试验在慢性丁型肝炎病毒(HDV)感染。 HDV使用HBV包膜蛋白为肝细胞的条目,因此如果Myrcludex B被批准可用于治疗两者的HBV和HDV慢性感染。 (Hepatera,2014年和城市等,2014年)。
4.1.2。免疫促进剂

四在临床阶段的HTA是免疫增强剂。肝病患有慢性乙型肝炎的机制基本上是一种慢性,但不充分的免疫和炎性攻击感染的肝细胞,导致肝损伤(Ganem和王子,2004年和西格和梅森,2000年)。一个单独的DAA因此可能是不够的;耐用,休药,抗病毒反应,因此可能需要某种类型的受影响的个体的免疫恢复。而人们希望抗原的完全抑制,以及病毒血症,可能揭露或启用无痛或抑制免疫应答(或者“释放”中和性抗体,其是否则络合与抗原),某些类型的直接免疫觉醒主机将是必要的(见审查Durantel和他的同事在本次研讨会)。

不幸的是,大部分的企图刺激免疫系统在慢性HBV携带者以清除HBV的令人失望,并且未能在人体试验中或有不良临床后果,如失代偿在那些与晚期肝纤维化或肝硬化。因此出现了在发展刺激宿主免疫识别乙肝病毒,慢性携带者,谁通常可以识别病毒,在细胞和体液免疫水平的策略相当大的兴趣,但不清除感染(BERTOLETTI和Gehring集团,2013年)。
4.1.2.1。 YIC

YIC包括乙肝表面抗原和乙肝免疫球蛋白,(抗-HBs免疫球蛋白)配合物作为治疗剂的候选与明矾作为佐剂(Xu等,2008)。候选达到相,其中该结果被认为是不令人满意的III期临床试验。过度刺激与YIC被证明减少YIC的功效由于免疫疲劳(Xu等人,2013年)。因此,它的延续是毋庸置疑的,代表了挫折和失望一度被认为有前途的这些替代方法。
4.1.2.2。 GS 9620

Toll样受体(TLR)-7是一个“病原体识别受体”表示主要在浆细胞样树突细胞(PDC)和B淋巴细胞识别病毒单链RNA的图案的溶酶体/核内体区室(O'Neill等人。 ,2013年)。有越来越多的证据身体模式识别受体激活可​​以直接在感染细胞抑制HBV(Chang等,2012)(见增昌和他的同事在本次研讨会即将进行的检讨)。

GS 9620是一个小分子TLR-7激动剂的临床开发(Roethle等人,2013年)。阶段1b的安全性研究最近已报道,显示药物是安全的,并取得了预期的诱导的外周血细胞干扰素刺激基因(甘恩等人,2015)。事实上,GS9620曾在旱獭和黑猩猩显著的活动,将是一个“第一类”,表明模式识别受体激活药物可有临床获益的慢性HBV感染的管理(兰福德等,2013)。
4.1.2.3。 SB 9200

HBV复制被激活视黄酸可诱导的基因-I(RIG I)中,这是由双链RNA和含蛋白-2(NOD-2)(Adam等人,2002年,毛核苷酸结合寡聚化结构域的刺激的抑制等人,2011年和佐藤等人,2015年)。代理可以激活RIG-I因此将提供一个新的途径。 SB从9200春季银行报在其网站上是一个小分子,通过上调RIG激活宿主的免疫系统I SB 9200目前在临床试验第一阶段(斯布林邦克)。
4.1.3。治疗性疫苗

这个概念和治疗疫苗治疗慢性乙型肝炎的现状是由Roggendorf先生和他的同事在本次研讨会即将举行的文章审查。

DV601(Dynavax公司)和GS4774(Gilead Sciences公司)是治疗性疫苗的候选人。 GS4774是工程化以表达含有四种主要的基因型的HBsAg序列的融合蛋白而DV601利用核心和表面抗原的热灭活疫苗。疫苗生产或引进的HBsAg可能看起来有逻辑有限,因为患有慢性乙型肝炎已经有乙肝表面抗原在其发行巨额。这一方法背后的假设是,治疗性疫苗会诱导特异性T细胞应答,在假定T细胞衰竭的脸部由于抗原过剩,由任一刺激抗原呈递,或者由专业的抗原呈递细胞引导的抗原呈递(Michel等人。,2015)。这些挑战都在本次审查以后讨论。正如任何免疫增强的方法,该限制将最有可能涉及到的毒性和不同患者不同反应。

迄今为止,GS4774,从热失活的酵​​母重组HBV抗原产生,已在第1阶段临床试验评价(Gaggar等人,2014年)。的Dynavax公司治疗性疫苗的候选,其包括硫代磷酸酯寡核苷酸,以及病毒多肽,如免疫刺激佐剂,也被证明是安全和有效地作为在1期研究的免疫原(霍尔珀林等人,2006。和普洛特金和Schaffner产品,2013) 。因为DV601的初始安全性试验,没有发展已被报道用于疫苗候选(DYNAVAX,2011)。
4.1.4。 Birinapant

从Tetralogic公司Birinapant,是一种小分子,被认为是模仿胱天蛋白酶(SMAC)的第二线粒体活化剂(Seigal等人,2015)。 SMAC通常与IAP结合(凋亡抑制剂),推向凋亡的细胞(霍罗翰等人,2013年)。

Birinapant已经进入三期临床试验为骨髓增生异常综合征和大肠癌的管理,所以有相当的安全性和有效性提供信息。是Birinapant的安全信息可从超过300名患者参加了这些试验(TetraLogic)。乙型肝炎的管理,Birinapant仅在临床前阶段,但据报道,引起病毒血症的令人印象深刻的减少受感染的小鼠的循环(Ebert等人,2015a,Ebert等人,2015B和Peters等, 2004年)。抗病毒影响的机理还不清楚,但似乎感染细胞选择性地消除,假定它们是对细胞凋亡刺激更敏感,比未感染的细胞。该战略是耐人寻味的,用这种方法来消除剩余的感染细胞的“巢”之后感染的细胞与更传统的方法减少的可能性,是非常引人注目的。另一方面,由于明显的原因,在与受感染的肝的实质部分的个体,这样的做法,必须采取谨慎,因为感染细胞的快速破坏可能是危险的。
4.1.5。日达仙

日达仙是一个28个氨基酸的肽基于胸腺肽α,从胸腺天然多肽(Tsai等人,2003)。据报道,初步显露才华,但也有研究证明有利和不利的结果(Wu等,2015)。在中国进行的一项随机临床试验表明,日达仙是安全的,耐受性好,能有效地抑制乙肝病毒的复制。同日达仙治疗的患者高得多的速度血清转化相比,用IFN-α治疗的患者(You等人,2001)。在另一项临床试验中,e抗原与日达仙治疗结合IFN-α阴性患者多健壮病毒学和生物化学反应相比,拉米夫定和IFN-α或IFN-α单独(的组合治疗的患者Saruc等人,2003 )。与此相反,日达仙与拉米夫定组合未发现有任何比单独拉米夫定更好(2008 Lee等人)中。胸腺肽α还结合使用IFN-α的另一项临床试验时,没有任何明显的好处(Yang等,2008)。随后的研究表明,与拉米夫定或干扰素组合,日达仙增加至一点好处检测在慢性感染HBeAg阳性患者,在抗病毒疗效的理由和兴趣有所减弱(Kim等,2012)。
4.2。在临床前研究阶段的HTA
4.2.1。免疫检查点抑制剂(PD-1)

在我们的免疫疲惫的了解的最新进展是产生了新的希望的免疫或主机针对性的治疗策略。我们现在有通过其中的一些病毒抗原,在慢性感染,被呈递给免疫系统,可导致免疫系统的故障清除病毒的机制的认识。现在有几种已知的途径,导致T细胞耗竭和这些途径可以被停止,以增强T细胞应答。

例如,程序性细胞死亡(PD-1)/ PD-1配体通路在T-细胞的抗原介导的用尽在几种慢性感染,包括HIV和丙型肝炎(BERTOLETTI和Gehring集团,2007,BERTOLETTI和Gehring集团关键作用,2013年,BERTOLETTI和肯尼迪,2014年,日等人2006年与彭等人,2008年)。在用于在C57BL小鼠的HBV表达的流体动力学尾静脉注射模型系统(曾化仪等人,2012),证明了一个PD-1 / PD-L1途径抑制的单克隆抗体可逆转免疫功能紊乱和HBV病毒的持久性。在HBV感染的病人的PD-1的表达水平也进行了研究,并已证实该循环HBV特异性T细胞的70%是PD-1的阳性(Zhang等人,2013年)。

抗PD-1抗体已经得到了有效的人类癌症治疗中使用,并在试验中用于治疗慢性丙型肝炎的管理(Gardiner等人,2013年)。但是,涉及PD-1用于治疗慢性HBV感染的管理没有正在进行的临床试验。这可能是由于至约自身免疫型反应产生不利影响的担忧。因此,尽管理论上的吸引力,和有力的实验证据,PD-1衍生的疗法治疗慢性乙型肝炎可能需要一些时间来开发。然而,辅助受体的PD-1样家族的其他成员可能会在调控慢性重要,并最终证明更好的治疗靶点(兴和Hogquist,2012)。
4.2.2。治疗性疫苗

治疗性疫苗已获得了相当多的关注,且临床阶段治疗性疫苗的HBV已经讨论(上面)。在这里,我们描述了领先的临床前技术的实施例和它们的发展状态,当可以确认。
4.2.2.1。 Altravax DNA疫苗

Altravax的治疗性疫苗的方法是构建野生型和异种HBs抗体表面的肽,并随后加入的HBc肽的嵌合体。这种方法是根据假设,即嵌合体将导致新的表位通过抗原呈递细胞的呈现。这些新颖的表位将有利地促进在慢性HBV感染的免疫应答。 C57BL / 6小鼠进行免疫的疫苗,以及由该疫苗引发的T细胞反应的报道,以满足由调查员(Altravax)的期望。
4.2.2.2。 INO-1800

INO-1800是从Inovio编码HBV核心抗原,已诱导的抗原特异性强的T细胞应答和高抗体滴度在临床前试验的共有序列的重组DNA疫苗(Obeng-阿杰伊等人,2012)。该疫苗也表现出很强的细胞毒性T细胞反应杀伤靶细胞,而不会造成很大的肝损伤(Obeng - 阿杰伊等,2012)。该公司刚刚启动的阶段1试验的疫苗(Inovio,2015年)。
4.2.2.3。 VLP

VLP生物正在开发的病毒样颗粒(VLP)(Schickli等人,2015),基于所述的HBV核心抗原,修改和设计以引起中和抗体前S1(惠特克等人,2009)。
4.2.2.4。 Chimigen HBV / NU500

从的Akshaya生物(加拿大)此试验用试剂是嵌合多肽包含芯和表面抗原蛋白和IgG的Fc结合域的区域。的假设是,在Fc部分直接将嵌合蛋白质至树突抗原呈递细胞,并且会有HBV抗原的增强呈现。这个概念是引人注目的,并在体外和报告在专业会议体内研究,认为这种方法可以诱导健壮的免​​疫应答的HBV抗原,在小鼠(乔治,2014年)。然而,成功的生产和演示病毒抗原的可能不足以恢复有意义的宿主免疫反应对HBV,因为可能会出现在所有的个体的慢性乙型肝炎,被称为“免疫学用尽”的免疫应答的“传入”缺陷。至于由于通路如PD-1 / PD-1L可能会破坏增强抗原提呈的影响前面提到,免疫疲惫。
4.2.2.5。 Editopes

的新方法,通过该小分子能够诱导产生一个HBsAg的肽带有新颖表位已经描述(2010年诺顿等人)中。简言之,将亚氨基糖葡糖苷酶抑制剂如N- butyldeoxynojirimycin,其抑制α-葡萄糖苷酶1,防止乙肝表面抗原(M)的多肽的聚糖加工,导致它们错误折叠,并在蛋白酶体降解(诺顿等人,2010和Simsek等人,2009年)。之前,他们的退化,对乙肝表面抗原的N-聚糖从多肽主链通过PNG酶的作用下,其水解连接到N-聚糖的天冬酰胺,导致其转化成天冬氨酸除去。乙肝表面抗原的蛋白水解片段因此包含一个CTL表位,而并非由HBV的基因编码。由于该氨基酸驻留在一个主要的CTL表位,新表位,称为editope,含有天冬氨酸代替天冬酰胺的。

这表明,动物(和推测,人类)可与亚氨基糖处理过的,和免疫的新的CTL表位(editopes),而且,理想的是,将培养的CTL应答,将攻击感染的细胞。该假说在慢性感染土拨鼠肝炎病毒(WHV)旱獭进行评价,并已证实,选择性淋巴细胞反应的天冬氨酸含酸editope可诱导在药理学依赖性(诺顿等人,2010)。然而,有对病毒血症或抗原没有可检测的效果。因此,尽管原则的免疫学证明,这种方法还没有进展进一步。
4.2.3。表观遗传修饰

小分子的组蛋白乙酰化酶(HDAC)抑制剂已经显示出抑制cccDNA的转录在组织培养中,无细胞毒性的条件下(Liu等人,2013年)。与此同时,从HBV DNA的转录整合到宿主基因组中得到加强,这表明从cccDNA的转录调节不同于来自综合基因组中的转录。这些结果尤其引人注目,因为有几个HDAC抑制剂三期临床研究的其他疾病,和两个已经批准用于难治性皮肤和外周T细胞淋巴瘤(汗和La Thangue,2012年西部和约翰斯通,2014年)。使用HDAC抑制剂抑制的cccDNA的阳性结果,因此令人兴奋,因为他们俩都已经被批准用于其他迹象,但当然,与任何主机靶向剂,人类使用可能带来的风险。
4.2.4。 Dimethylxanthenone STING激动剂

干扰素基因的刺激(STING)是一种适配器多肽几个细胞质DNA感应受体,以及细菌环状二核苷酸的第二信使和先天免疫反应的细胞内调节剂(Cai等,2014年)。 STING与小分子类黄酮的刺激有效抑制小鼠肝细胞HBV复制。据证实,STING刺激主要诱导1型干扰素反应,不像TLR激动剂诱导的炎性细胞因子响应(Guo等,2015)。重要的是,它已经证明,在感染后的小于24小时,STING激动剂减少HBV-DNA的量在感染小鼠的血液中的流体动力学尾静脉注射模型(Guo等,2015)。
4.2.5。亲环蛋白抑制剂

亲环蛋白抑制剂已经显示出具有广泛的抗病毒影响在为丙型肝炎的临床试验(Membreno等人,2013年)。作用机制似乎涉及在病毒多肽功能用于宿主蛋白质折叠的分子伴侣的影响。

所述亲环蛋白抑制剂Alisporivir(原DEBIO 025)和诺华化合物NIM811都被报道具有抗乙肝病毒在组织培养中的抑制活性(Phillips等人,2015)。 Oncore-Tekmira现在正在开发一个亲环抑制剂(OCB-030 / NVPO19)用于治疗慢性乙型肝炎环孢菌素A的管理,亲环的化学抑制剂,其结合并抑制亲环没有任何免疫抑制作用,也可以是用于抑制条目重要肝细胞(Nkongolo等人,2014年)。
5.结论

它已经有50年了澳大利亚抗原的发现,但治疗慢性HBV感染的治疗仍无法使用。与此相反,丙型肝炎病毒的发现后25年,几乎慢性丙型肝炎的所有情况下,现在可以通过抗病毒治疗的短疗程(沃德,2014年)固化。这巨大的成功与丙型肝炎创造兴奋治愈慢性乙型肝炎的可能性,许多科学家现在正在对乙肝的研究。再加上抗病毒的研究在中国的日益突出和南亚,其中乙肝是流行(埃尔 - Serag,2012)的其余部分,这已经创造了创新的乙肝治疗策略势头。

作为该评价所讨论的,研究性药物目前在临床开发的高级阶段是已承诺通过提高疗效和减少副作用,提高在现有疗法的前药。研究性药物例如siRNA,相比于目前的治疗方法已经达到临床试验的HBsAg抑制剂和衣壳抑制剂,有不同的作用机制。新的传输技术如脂质纳米颗粒新的生命到siRNA的方法。新技术的发现,筛选和分析,也取得了许多可能的研究性药物的发展,开发使用HBV生物学的新的和以前未开发地区的临床前阶段。这些措施包括进入抑制剂,采用新型嵌合抗原决定簇,选择性杀伤感染的肝细胞和新的治疗疫苗。有一种希望使用新的机制用于抑制乙型肝炎病毒复制的这些研究性药物,单独或组合使用与现有的疗法会在更好的管理慢性肝炎的帮助。最大的挑战是降低肝内病毒DNA水平,并消除cccDNA的。候选疗法例如siRNA保持承诺要做到这一点,通过消除HBV转录物,最终导致cccDNA的损失,过了一段时间,因此,从临床试验的结果是期待已久的。除的DAA,它被认为是试剂,可以提高对病毒的免疫反应可以发挥持续关药物病毒学反应中起重要作用。在发展因此新HTA的,如治疗性疫苗,PD-1 / PD-1ligand途径抑制剂,新型嵌合抗原,增强抗原呈递的,可能是有益的。

这就是说,迄今为止仍存在只有两个家庭的药物来治疗慢性乙型肝炎,干扰素和聚合酶抑制剂。但是,这显然会改变。基于一些在我们描述在本次审查的管道研究性药物,我们预测,在五年内将有批准用于慢性乙型肝炎的管理至少有两个新的药物,并在十年内,应该有功能治愈。
致谢

这个手稿的准备部分由美国国立卫生研究院的资助RO1 AI104636,由巴鲁克S. Blumberg的研究所和宾夕法尼亚州的联邦资金的支持。
已有 1 人评分现金 收起 理由
MP4 + 2 k

总评分: 现金 + 2   查看全部评分

Rank: 5Rank: 5

现金
72 元 
精华
帖子
59 
注册时间
2015-6-2 
最后登录
2016-7-31 
5
发表于 2015-7-3 07:11 |只看该作者
辛苦啦
看到好多新药在研发中呀
一定要好好地开心地活着,等待乙肝被攻克的那一天呀,希望不要等太久才好哦

Rank: 5Rank: 5

现金
782 元 
精华
帖子
693 
注册时间
2014-8-20 
最后登录
2019-12-30 
6
发表于 2015-7-3 09:07 |只看该作者
这篇文章说10年实现功能性治愈应该是比较客观的!现在肝脏没有出现问题的人,应该不会有问题了。即使有轻微肝纤维化的人,也应该可以逆转。乙肝对人类的危害确实接近尾声了。(当然有很多接受不到正规治疗的患者还会有麻烦。)
还有很多病,根本没有药,这些病才是大麻烦。如慢性结肠炎,这种病,好像也没有特效药!

Rank: 7Rank: 7Rank: 7

现金
3543 元 
精华
帖子
2934 
注册时间
2001-10-26 
最后登录
2018-12-25 
7
发表于 2015-7-3 11:42 |只看该作者
信心量大
建议有实力的众筹基金会,十亿元级以上,真劝慰雷军、地产商、首富、百度,强生战略入股,全球重金悬赏求拜攻克乙肝的美国古巴专家英才及技术!!齐参与、正能量,或许好药就在转角间被发现,如果没有?就用真实去验证及考证中草药民间名医,延长寿命
嘤其鸣矣,求其友声! 相彼鸟矣,犹求友声;矧伊人矣,不求友生?神之听之,

Rank: 7Rank: 7Rank: 7

现金
3543 元 
精华
帖子
2934 
注册时间
2001-10-26 
最后登录
2018-12-25 
8
发表于 2015-7-3 11:43 |只看该作者
本帖最后由 zgct 于 2015-7-3 17:11 编辑
yelanglms 发表于 2015-7-3 09:07
这篇文章说10年实现功能性治愈应该是比较客观的!现在肝脏没有出现问题的人,应该不会有问题了。即使有轻微 ...

没有大家及精英们积极主动去攻坚,大家都各方出力发现创新等,大家乐呵呵的坐等10年后药成?估计轻微发病的90后也可能没希望!
建议有实力的众筹基金会,十亿元级以上,真劝慰雷军、地产商、首富、百度,强生战略入股,全球重金悬赏求拜攻克乙肝的美国古巴专家英才及技术!!齐参与、正能量,或许好药就在转角间被发现,如果没有?就用真实去验证及考证中草药民间名医,延长寿命
嘤其鸣矣,求其友声! 相彼鸟矣,犹求友声;矧伊人矣,不求友生?神之听之,

Rank: 7Rank: 7Rank: 7

现金
3378 元 
精华
帖子
2638 
注册时间
2007-4-5 
最后登录
2022-11-8 
9
发表于 2015-7-3 17:41 |只看该作者
看来五至十年攻克乙肝的估计,兴许有门。
病友交流,仅供参考.

Rank: 7Rank: 7Rank: 7

现金
3543 元 
精华
帖子
2934 
注册时间
2001-10-26 
最后登录
2018-12-25 
10
发表于 2015-7-3 20:37 |只看该作者
好文
建议有实力的众筹基金会,十亿元级以上,真劝慰雷军、地产商、首富、百度,强生战略入股,全球重金悬赏求拜攻克乙肝的美国古巴专家英才及技术!!齐参与、正能量,或许好药就在转角间被发现,如果没有?就用真实去验证及考证中草药民间名医,延长寿命
嘤其鸣矣,求其友声! 相彼鸟矣,犹求友声;矧伊人矣,不求友生?神之听之,
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册

肝胆相照论坛

GMT+8, 2024-5-18 17:59 , Processed in 0.018940 second(s), 12 queries , Gzip On.

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.