15/10/02说明:此前论坛服务器频繁出错,现已更换服务器。今后论坛继续数据库备份,不备份上传附件。

肝胆相照论坛

 

 

肝胆相照论坛 论坛 学术讨论& HBV English 第二次到达的RNAi
查看: 4915|回复: 6
go

第二次到达的RNAi [复制链接]

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

1
发表于 2014-9-4 13:30 |只看该作者 |倒序浏览 |打印
                        The Second Coming of RNAi                       

Now showing clinical progress against liver diseases, the gene-silencing technique begins to fulfill some of its promises.

                       

                                By Eric Bender  | September 1, 2014                       

                                       
                                       
                                                                THE ART OF SILENCING: Small interfering RNA molecules are incorporated into an RNA-induced silencing complex where they bind and degrade target messenger RNAs (yellow with red rings). Taking advantage of this natural RNA interference (RNAi) pathway, researchers are developing therapeutics for liver-based diseases, viral infections, cancer, and more.© MEDI-MATION LTD/SCIENCE SOURCE
        Since its discovery 16 years ago, researchers have been eyeing RNA interference (RNAi)—a natural process of posttranscriptional silencing of genes by small fragments of the nucleic acid—for its potential in therapy, especially in treating forms of cancer and other diseases that are particularly hard to address with existing drugs. But the path of such RNAi therapies to the clinic has been nothing short of a pharmaceutical roller-coaster ride.
        Andrew Fire and Craig Mello first demonstrated RNAi in C. elegans in 1998, a discovery recognized in 2006 when they won the Nobel Prize in Physiology or Medicine.1 Interest exploded in 2001 when biochemist Thomas Tuschl and colleagues at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, demonstrated potent and specific RNAi silencing in mammalian cells.2 Before long, researchers around the world were using these principles to selectively knock down the expression of genes of interest in cell lines and animal models.
        “RNAi rapidly became a workhorse technique for basic research,” says Douglas Fambrough, chief executive officer at Dicerna Pharmaceuticals in Watertown, Massachusetts. “It was really easy to get it to work, and it worked really well.”
        At the same time, the scientific community began to develop a growing interest in RNAi therapies. Among its benefits, RNAi can prevent the proteins actually driving an illness from being translated, which avoids the need to attack the disease somewhere downstream in a molecular cascade, as small-molecule drugs and biologics often do, says Akshay Vaishnaw, chief medical officer at Alnylam Pharmaceuticals in Cambridge, Massachusetts. “Why not turn them off at their source?” he asks.
        RNAi can provide greater target specificity than small molecules and inhibit the expression of proteins that lack the enzymatic pocket necessary for binding small-molecule drugs, says Mark Murray, president of Tekmira Pharmaceuticals in Vancouver, British Columbia. RNAi can also target proteins that can’t be reached directly by monoclonal antibodies because of their intracellular location.
        Around 2005, the field entered what independent biotech consultant Dirk Haussecker refers to as an “era of irrational exuberance” surrounding the new approach. Major pharmaceutical companies invested several billion dollars in RNAi therapeutics “regardless of technical obstacles,” says Haussecker, who specializes in RNAi and other RNA-based therapies. Numerous biotechs jumped into RNAi therapeutics—especially for diseases with well-validated genetic targets not addressed by current treatments.
        But early clinical trials generally failed to meet expectations. Most strikingly, Miami, Florida–based pharmaceutical and diagnostics company OPKO Health shut down its Phase 3 trial of an RNAi treatment for wet macular degeneration in 2009 after the intervention failed to meet the trial goals. Other RNAi-based drugs provoked strong innate immune reactions, failed to deliver patient benefit, or both.
        The disappointments hung over the field for the next few years, a period Haussecker refers to as “the era of doubts and despair.” In the face of broader industry turmoil, RNAi programs often were among the first to get chopped. In 2010, Roche, which had invested about $500 million in RNAi, shut down its internal research program. The following year, Pfizer and Abbott also pulled out of in-house RNAi development, and Merck shuttered the RNAi laboratory it had acquired in 2006 with its $1.1 billion purchase of Sirna Therapeutics.
        The good news is that the RNAi roller coaster has been on a fairly steady climb for the past few years, following refinements in RNAi targeting and delivery. The number of early clinical successes is climbing, and many in the field expect the next few years to see the approval from the US Food and Drug Administration (FDA) for numerous RNAi drugs now in the pipeline. “There are some who say that the RNAi cup is half empty,” says Alnylam’s Vaishnaw, “but the regulatory authorities are not in that group. Our early development work is extremely compelling to regulators and they partner vigorously because of that.” (The FDA declined to comment on its assessment of RNAi therapeutics as a new class of drugs.)
        Speculation about future therapy approvals aside, there’s no question about the field’s recent scientific progress, says David Lewis, chief scientific officer at Arrowhead Research in Madison, Wisconsin. “The days of wondering whether RNAi will be effective in humans are behind us.”
        Lodging in the liver        MOLECULAR SNIPERS: Therapies bases on interference RNA (RNAi) deliver small interfering RNAs (siRNAs) to diseased cells, where the siRNA’s antisense strand is incorporated into an RNA-induced silencing complex and used as a template to identify and degrade target messenger RNA.
        See full infographic: JPG | PDF© SCOTT LEIGHTON
The process of RNAi has now been well-documented in mammals. Double-stranded RNA sequences of approximately 70 nucleotides, known as short hairpin RNAs (shRNAs), are exported to the cytoplasm, where the Dicer enzyme cleaves them into small interfering RNAs (siRNAs) about 21 nucleotides long. The siRNA’s antisense strand then incorporates into an RNA-induced silencing complex (RISC), which can attach to and degrade its complementary target messenger RNA, reducing or stopping the expression of proteins. (See illustration.) As a natural process, RNAi plays major roles in defending the genome against intruders and in aiding developmental processes. As a therapeutic, RNAi has the potential to wipe out proteins that drive disease.
        Importantly, the phenomenon is highly conserved across mammals. “We’ve explored many species and can achieve RNAi reliably and consistently across all of them with the same siRNAs,” Vaishnaw says. “That has allowed us to move quickly across species with confidence that results will translate into humans and to define dose and regimen for humans very quickly.”
        While unmodified siRNAs have been injected locally into the eye and other organs in early trials, those released directly into the bloodstream are degraded by enzymes and are unable to cross cell membranes. One strategy for smuggling siRNAs through the blood and into diseased cells is to embed them in lipid nanoparticles (LNPs). (See “Nanomedicine,” The Scientist, August 2014.) When scientists tested early siRNA LNPs in animal models, they found that the particles generally ended up in the liver. The liver is highly vascularized, Vaishnaw explains, and its endothelium is peppered with pores about 100 nanometers in diameter, wide enough for 70- to 80-nanometer LNPs to slip through en route to hepatocytes. Moreover, once the LNPs are released into the bloodstream, they are rapidly coated with apolipoprotein E (ApoE), which binds to receptors on hepatocytes and eases cell entry of the nanoparticles.
                        We’ve explored many species and can achieve RNAi reliably and consistently across all of them with the same siRNAs. That has allowed us to move quickly across species with confidence that results will translate into humans.

—Akshay Vaishnaw,
                Alnylam Pharmaceuticals


        Exploiting these mechanisms, many of today’s promising RNAi drugs address liver-linked diseases. After targeting a range of illnesses in its early years, Alnylam now concentrates on liver-based diseases, with more than 15 RNAi therapies in clinical development. Most advanced is the LNP-formulated siRNA drug patisiran (ALN-TTR02), which is delivered via infusion to treat transthyretin-mediated (TTR) amyloidosis, an orphan liver disease that can lead to heart failure and has no approved treatments in the United States. In April, the company reported positive preliminary results of a Phase 2 trial, demonstrating that the drug could reduce blood levels of the TTR proteins that drive the disease by 80 percent or more. The firm is moving ahead with a Phase 3 trial and hopes to report results in 2017.
        Another LNP-packaged siRNA drug, ALN-PCS02, lowers expression of the enzyme proprotein convertase subtilisin/kexin type 9 (PCSK9), which is involved in regulating blood cholesterol, to treat an inherited form of high cholesterol. In a Phase 1 trial of 32 volunteers with raised levels of low-density lipoprotein cholesterol (LDL-C), ALN-PCS02 lowered levels of LDL-C by as much as 57 percent.3
        Alnylam researchers are also taking an alternate approach to delivering RNAi agents to target tissues, involving the covalent linkage of engineered siRNAs with the sugar N-acetylgalactosamine (GalNAc), for which hepatocytes have a membrane receptor. This technique is producing a new class of drugs for diverse liver diseases that can be administered as a shot in the arm rather than infused intravenously, as is done with LNP drugs. The company has applied this strategy to its ALN-PCS program, for example, developing a PCSK9-targeting GalNAc agent that Alnylam researchers hope to have in clinical trials by early next year.
        An approved conjugated therapeutic would have to compete with PCSK9 monoclonal antibodies now in Phase 3 trials, but RNAi drugs may still grab a significant share of this market, says Haussecker, if they have milder side effects or work more consistently across patients. Unlike monoclonal antibodies, which do not work as well for individuals who have high levels of PCSK9, “RNAi doesn’t care about the baseline expression level of the target gene,” he explains.
        Arrowhead and Dicerna also have clinical programs targeting liver-linked diseases. Importantly, the latest generation of siRNA therapies for liver illnesses typically display good safety profiles and are well-tolerated among patients. Some patients do suffer from flu-like symptoms as a result of an innate immune reaction known as the interferon response. “The issues that the field is wrestling with are all short-term reactions to therapy,” says Dicerna’s Fambrough.
        But other than these reactions, today’s drugs generally “look quite innocuous,” Vaishnaw says. However, he emphasizes that “I don’t think we can be glib about this; human safety is human safety, and this is still an early technology.” Haussecker and other experts also emphasize that concerns remain that unexpected effects may crop up over the long term.
        Going viral        Hepatitis C virus© JAMES CAVALLINI/SCIENCE SOURCERNAi is also showing promise in the treatment of viral infections. By conservative estimates, hepatitis B virus (HBV) chronically infects more than 300 million people worldwide, killing at least 780,000 annually through liver scarring (cirrhosis), liver failure, and liver cancer. The disease can be treated, but many patients don’t respond to standard therapy with an interferon drug, and newer oral nucleoside and nucleotide agents can inhibit HBV replication without curing the illness when viral DNA sequences have become integrated into patients’ DNA.
        Even when current drugs stop HBV viral replication, “patients still produce a fair amount of viral surface antigen, and that production of antigen really dampens the immune system,” says Arrowhead’s Lewis. “The idea is that if you can decrease the level of viral antigen production, you’ll be able to reawaken the immune system so that it can actually clear the liver of the virus. We thought that would be a perfect opportunity to use RNAi.”
        In March, Arrowhead researchers began dosing HBV patients in a Phase 2 clinical trial with the company’s ARC-520 RNAi agent. The drug combines two sequences of siRNA with Arrowhead’s so-called dynamic polyconjugate (DPC), which includes a polymer backbone along with chains of polyethylene glycol (PEG) that stabilize the compound in the blood and targeting ligands that direct the therapeutic to the cell type of interest. The company hopes to report the results of the study this year. Alnylam, Benitec Biopharma of Sydney, Australia, and Tekmira are following suit, readying HBV agents for clinical trials.
        Meanwhile, Benitec is taking a different RNAi approach to targeting hepatitis C virus (HCV), which infects more than 150 million people worldwide and can lead to liver failure, liver cancer, and other life-threatening illnesses. The company’s RNAi therapeutic, called TT-034, uses an adeno-associated virus to deliver a plasmid carrying three shRNA-encoding genes to the host nucleus. (See illustration.) The genes are expressed in host cells to suppress production of HCV protein in hepatocytes.4 In May, an HCV-infected patient, who had failed to respond to previous therapies, was the first to receive an infusion of TT-034 in a Phase 1/2 trial. A total of 14 patients will receive increasing doses while being closely monitored.
        “This is the first time a viral vector encoding for short hairpin RNA has gone directly into the patient,” says David Suhy, senior vice president for research and development at Benitec. “You’re essentially setting up shop within these cells, and transcription is running 24/7. It’s a slow-and-go study, because it’s nonwithdrawable; if there’s a serious adverse event we won’t be able to withdraw the compound.”
        On the upside, the gene-therapy approach comes with a very large potential advantage over current HCV drugs, Suhy adds. “It doesn’t rely on patient compliance in taking their pills on a daily basis to achieve therapeutic efficacy. Patients come in, they get infused, they walk out, and it’s done.” This benefit may be particularly compelling among sub-Saharan and East Asian populations, which have the highest rates of chronic HCV infection and often lack access to health care.
        Tekmira is targeting another virus that attacks the liver and can kill far more quickly: Ebola. The firm’s infused TKM-Ebola LNP delivers siRNAs that target multiple sites in the virus genome, inhibiting its replication.5 “We have been able to establish in animal models that we can rescue the animals from certain death following an Ebola infection,” says Murray.
        Working under a contract with the US Department of Defense, Tekmira is testing TKM-Ebola under the FDA’s “animal rule,” which allows safety testing in healthy human volunteers while efficacy is probed in animal models. The company reported favorable first results for a Phase 1 human safety trial in May, but the FDA put the trial on hold in July, due to problematic immune responses among volunteers given the highest dose.
        Interfering with cancer        From day one, RNAi seemed to offer a dream weapon against cancer, especially against currently undruggable oncogenes. MYC, for example, has long been known as a major oncogene, but “the pharmaceutical industry has never had a tool to deal with it,” says Dicerna’s Fambrough. “RNAi presents us with a tool.” Unlike small-molecule drugs and biologics, which inhibit the mutant proteins that drive a tumor’s growth, RNAi drugs can stop the proteins’ production with great specificity.
        But while some early studies showed promise, no drug has moved into Phase 3 trials. In 2010, Arrowhead’s CALAA-01 was the first to exhibit mechanistic evidence of RNAi induced by an siRNA agent in humans in a Phase 1 trial testing the therapy’s effect on melanoma. CALAA-01, a nanoparticle built up from a polymer containing cyclodextrin sugar molecules, appeared to accumulate in solid tumors and to block translation of its target, RRM2, the M2 subunit of the enzyme ribonucleotide reductase, which plays a role in cell division.6 But questions cropped up about the therapy’s effectiveness and its side effects, and Arrowhead later quietly dropped CALAA-01 in favor of drugs based on the company’s DPC platform.
        At least three other companies are now pursuing RNAi approaches to treat cancer, however, with early-stage trials now underway.7 This April, Dicerna began a Phase 1 study of its DCR-MYC, based on the company’s LNP technology, and the firm is enrolling patients with a broad range of MYC-driven solid tumors, as well as multiple myeloma and lymphomas.
                        The days of wondering whether RNAi will be effective in humans are behind us.David Lewis, Arrowhead Research

—David Lewis,
                Arrowhead Research


       
        In May, Tekmira kicked off a Phase 1/2 trial for treating hepatocellular cancer with its TKM-PLK1, which inhibits expression of polo-like kinase 1 (PLK1), another established target in oncology. That study is running alongside an ongoing Phase 2 trial for gastrointestinal neuroendocrine tumors and adrenocortical carcinoma. “In all of these disease areas, there are very poor or in some cases no therapeutic alternatives,” Murray emphasizes.
        Silenseed, a pharmaceutical company located in Jerusalem, has set its sights even higher—on the oncogene k-RAS, “almost a holy grail” in cancer research, company CEO Amotz Shemi says. For 30 years, people have been trying to target mutant k-RAS with small-molecule drugs, but it’s very difficult to inhibit without interfering with other proteins, Shemi says. Silenseed takes the approach of embedding siRNAs that target mutant k-RAS in a millimeter-scale matrix called LODER (Local Drug EluteR). Those LODERs are then injected into a tumor, where the siRNAs release over time.
        Silenseed tested the concept in a Phase 1 trial among patients with locally advanced pancreatic cancer, a famously aggressive and difficult-to-treat disease. Injected with an endoscopic biopsy needle, LODERs were designed to release about half of the siRNAs in the first week or two, deliver the rest of their payload over four months, and then dissolve completely.8 Among 12 patients, none showed tumor progression when examined 8 to 12 weeks after a single treatment, and median overall survival among trial participants was about 15 months, whereas most patients with the disease die within a year of diagnosis. The company will follow up with a Phase 2/3 randomized trial expected to launch by early 2015.
        New leads        Research on more targeted and more powerful RNAi agents charges ahead in academia as well as in pharmaceutical labs, with some instances highlighted at a summer symposium on RNA biology held in June at MIT’s Koch Institute for Integrative Cancer Research. MIT professor Sangheeta Bhatia, for example, presented on advances in a nanocomplex architecture in which siRNAs are wrapped inside peptides designed to penetrate tumors and pass through cell membranes. In its first incarnation, the nanocomplex not only validated inhibitor of DNA binding 4 (ID4) as a novel oncogene, but improved survival in mouse models of ovarian cancer by knocking down its expression.9 In another example, MIT associate professor Daniel Anderson described progress in generating intricately assembled LNPs that incorporate PEG-lipids, lipopeptides, phospholipids, cholesterol, and siRNAs, offering 100 times the potency of earlier designs.10
        As developers refine RNAi targeting and delivery, Anderson points out, siRNAs offer the opportunity to do modular pharmacology, with drug designers swapping in targeting ligands aimed at certain cell types and RNA sequences aimed at specific mutations. Arrowhead, for example, is investigating a version of its DPC nanoparticle platform that accepts different targeting ligands and uses different chemistry to extend the agent’s circulation time, improving the drug’s ability to reach targets outside the liver, Lewis says.
        “RNAi has come out of the experimental realm into the clinical realm,” Lewis says. “We’re in a hugely exciting time right now. It’s not often you get a chance to be part of a nascent field like this that will really make an impact on human medicine.” 
       
        Eric Bender is a freelance science writer based in Newton, MA.
        References
  •                 A. Fire et al., “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature, 391:806-11, 1998.
  •                 S.M. Elbashir et al., “Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells,” Nature, 411:494-98, 2001.
  •                 K. Fitzgerald et al., “Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial,” The Lancet, 383:60-68, 2014.
  •                 H. Denise et al., “Deep sequencing insights in therapeutic shRNA processing and siRNA target cleavage precision,” Mol Ther Nucleic Acids, 3:e145, 2014.
  •                 T.W. Geisbert et al., “Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study,” The Lancet, 375:1896-905, 2010.
  •                 M.E. Davis et al., “Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles,” Nature, 464:1067-70, 2010.
  •                 S.Y. Wu et al., “RNAi therapies: Drugging the undruggable,” Sci Transl Med, 6:240ps7, 2014.
  •                 E. Zorde Khvalevsky et al., “Mutant KRAS is a druggable target for pancreatic cancer,” PNAS, 110:20723-28, 2013.
  •                 Y. Ren et al., “Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4,” Sci Transl Med, 4:147ra112, 2012.
  •                 Y. Dong et al., “Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates,” PNAS, 111:3955-60, 2014.
               
                                                                        Tags                                RNAi,                                 RNA interference,                                 disease/medicine,                                 biotherapeutics and                                 biotechnology                       
                                       

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

2
发表于 2014-9-4 13:32 |只看该作者
第二次到达的RNAi

现在显示对肝脏疾病的临床进展,基因沉默技术,开始履行它的一些承诺。

由埃里克·本德尔|2014年9月1日




沉默的技术:小干扰RNA分子被掺入RNA诱导的沉默复合物,其中它们结合和降解靶信使RNA(黄红色的环)。采取这种天然RNA干扰的优势技术(RNAi)途径,研究人员正在开发治疗肝为基础的疾病,病毒感染,癌症等。©MEDI-息LTD/科学SOURCE

自从它的发现16年来,研究人员一直在注视RNA干扰(RNAi)的基因的转录后沉默的核酸 - 其在治疗中的潜在的小片段-a自然过程,尤其是在治疗的癌症形式和其他疾病是特别难以解决与现有药物。但这样的RNAi疗法诊所的路径已经不折不扣的制药坐过山车的。

安德鲁消防和克雷格·梅洛首次证实RNA干扰线虫于1998年,于2006年认识的发现,当他们获得了诺贝尔生理学或Medicine.1爆油炸的兴趣在2001年化学家托马斯针对Tuschl和同事马克斯普朗克生物物理化学研究所在德国哥廷根,在哺乳动物cells.2表现出强大的和特异性RNAi沉默不久,世界各地的研究人员利用这些原则有选择性地击倒在细胞和动物模型目的基因的表达。

“RNA干扰迅速成为基础研究的主力技术,”道格拉斯Fambrough,在Dicerna制药水城,马萨诸塞首席执行官说。 “这是很容易得到它的工作,它的工作非常出色。”

与此同时,科学界开始发展中的RNAi疗法的兴趣与日俱增。在它的好处,RNAi技术可以防止实际驾驶被翻译的疾病,它避免了攻击疾病的某处下游的分子级联,小分子药物和生物制剂常做的蛋白质,说阿克沙伊Vaishnaw,在首席医疗官Alnylam制药在马萨诸塞州剑桥市。 “为什么不把他们关在他们的来源?”他问。

RNAi技术可以提供更大的靶标特异性比小分子抑制,缺乏必要的约束力小分子药物的酶口袋蛋白的表达,马克说穆雷,Tekmira制药在温哥华,不列颠哥伦比亚总统。 RNA干扰还可以针对那些不能直接由单克隆抗体,因为它们的细胞内位置达到蛋白质。

2005年左右,在字段中输入德克Haussecker指的是什么独立的生物技术顾问,为“时代的非理性繁荣”周围的新方法。大型制药公司投入了数十亿美元的RNAi疗法“无论技术上的障碍,”Haussecker,谁在RNA干扰和其它RNA为基础的治疗说。许多生物技术公司跳进RNAi疗法,尤其是对于那些不是由目前的治疗处理以及验证的遗传性疾病的目标。

但是,早期的临床试验一般未能达到预期。最引人注目的是,迈阿密,佛罗里达州为基础的制药和诊断公司OPKO健康关停的RNAi治疗湿性黄斑变性的3期临床试验在2009年后的干预未能达到试验目标。其他基于RNAi的药物引起了强烈的先天免疫反应,未能实现的患者益处,或两者兼而有之。

令人失望挂在该领域在未来的几年中,一段Haussecker指为“怀疑和绝望的时代。”在更广泛的行业风暴面前,RNAi技术方案往往是第一批获得砍伤。 2010年,罗氏公司,其中有在RNAi的投资约5亿美元,关闭其内部研究计划。次年,辉瑞公司和雅培公司还掏出内部RNAi技术的发展,和默克公司倒闭,它已在2006年斥资1.1十亿收购siRNA治疗的获得的RNA干扰实验。

好消息是,RNAi的过山车一直相当稳健攀升,在过去的几年中,按照RNA干扰和交付改进。早期的临床成功的数量节节攀升,并在许多领域预计未来几年看到来自美国食品和药物管理局(FDA),为许多RNAi药物的批准,现在正在进行中。 “有一些谁说,RNAi的杯子是半空的,说:”Alnylam公司的Vaishnaw“,但监管部门并不是该组中。我们的早期开发工作是极具吸引力的,以监管者和他们的合作伙伴的大力,因为这一点。“(美国食品药物管理局拒绝对RNAi疗法作为一类新的药物的评估发表评论。)

猜测未来疗法的批准之外,没有关于该领域的最新科学进展的问题,说大卫·刘易斯,在箭头的研究威斯康星州麦迪逊市的首席科学官。 “想知道的RNAi是否有效在人类的时代已经过去了。”
寄宿在肝脏

分子SNIPERS:关于干扰RNA(RNAi)的输送小干扰RNA(siRNA)疗法碱基对患病细胞,其中所述siRNA的反义链被掺入RNA诱导的沉默复合物,并用作模板,以识别和降解靶信使RNA。
看到完整的信息图表:JPG| RNAi技术的PDF版本©斯科特LEIGHTONThe过程现在已经充分证明在哺乳动物。约70个核苷酸的双链RNA的序列,被称为短发夹RNA(shRNA的),出口到细胞质中,在那里将切酶酶裂解成小干扰RNA(siRNA),约21个核苷酸长。所述siRNA的反义链,然后整合入RNA诱导的沉默复合体(RISC),其可连接到并降低其互补靶信使RNA,减少或停止蛋白质的表达。 (见图示)。作为一个自然的过程,RNAi技术在抵御入侵者的基因组,并在帮助发育过程中扮演着重要的角色。作为一个治疗,RNA干扰已消灭的蛋白质,驱病的可能性。

重要的是,这一现象是高度跨哺乳动物保守的。 “我们已经探讨了许多物种,并且可以实现RNAi技术可靠,始终如一地所有的人都用相同的siRNA,”Vaishnaw说。 “这使我们能够跨越物种的快速移动有信心的结果将转化为人类,并很快确定​​剂量和疗程的人。”

虽然未改性的siRNA被注射到局部眼睛和其他器官的早期试验中,那些直接释放到血液中被酶降解,无法穿过细胞膜。一个战略,通过血液进入病变细胞走私的siRNA是将它们嵌入脂质纳米粒(岭澳核电站)。 (请参阅“纳米医学”的科学家,2014年八月),当科学家在动物模型中测试早期的siRNA岭澳核电站,他们发现了粒子通常结束了在肝脏中。肝脏是高度血管,Vaishnaw解释,其内皮穿插着毛孔约100纳米的直径,足够宽70至80纳米的岭澳核电站漏网之鱼途中肝细胞。而且,一旦岭澳核电站被释放到血液中,它们被迅速涂覆有载脂蛋白E(ApoE基因),其结合到受体上的肝细胞,并简化了纳米粒子进入细胞。

    我们讨论了许多种,可以实现RNAi的可靠且一致地个个具有相同的siRNAs。这使我们能够跨越物种的快速移动有信心的结果将转化为humans.-阿克沙伊Vaishnaw,
    Alnylam制药

利用这些机制,今天的许多有前途的RNAi药物解决肝脏疾病联系在一起。针对一系列疾病在其早期几年后,Alnylam公司目前专注于肝病为主的疾病,有超过15个的RNAi疗法在临床上的发展。最先进的是携号转网,配制的siRNA药物patisiran(ALN-TTR02),它是通过输液来治疗甲状腺素蛋白介导的蛋白(TTR)淀粉样变性,孤儿肝脏疾病,可导致心脏衰竭,并在美国没有批准的治疗提供。今年四月,该公司宣布第二阶段试验的阳性初步结果,证明该药物可降低TTR蛋白80%以上的驾驶疾病的血药浓度。该公司正在推进第3期试验,并希望在2017年报告结果。

另外携号转网包装的siRNA药物ALN-PCS02,降低了酶的前体蛋白转化酶枯草杆菌蛋白酶/克新类型9(PCSK9),这是参与调节血液中的胆固醇,治疗高胆固醇的遗传形式的表达。在32名志愿者与低密度脂蛋白胆固醇(LDL-C)水平升高第1阶段试验中,ALN-PCS02降低的LDL-C的水平幅度高达57%。3

Alnylam公司的研究人员还采取了另一种方法来提供RNAi试剂为目标的组织,包括设计的siRNA与糖氮 - 乙酰(半乳糖胺),其肝细胞有一个膜受体的共价键。这种技术是生产一类新的药物不同肝脏疾病,可以服用的强心针,而不是静脉滴注,如与药物的携号转网做。本公司已申请这一战略的ALN-PCS程序,例如,开发一个PCSK9靶向半乳糖胺剂Alnylam公司的研究人员希望在明年年初有临床试验。

经批准的共轭治疗必须与PCSK9单克隆抗体目前在第三阶段试验中竞争,但RNAi药物仍可能抢显著分享这个市场,说Haussecker,如果他们有温和的副作用或在患者更稳定的工作。不同的单克隆抗体,不工作,以及对谁拥有高水平的PCSK9的人,“RNA干扰不关心靶基因的基础表达水平,”他说。

箭头和Dicerna也有针对肝脏疾病联系在一起临床项目。重要的是,最新一代的siRNA治疗肝脏疾病的典型表现出良好的安全性配置文件,并且耐受性良好的患者。有些病人也从流感样症状的先天性免疫反应被称为干扰素反应的结果受到影响。 “该场摔跤的问题都是短期的反应疗法”Dicerna的Fambrough说。

但除了这些反应,今天的药一般“看起来很无害,”Vaishnaw说。不过,他强调,“我不认为我们可以巧舌如簧关于这一点;人身安全是人的安全,这仍然是一个早期的技术“。Haussecker和其他专家也强调,问题仍然是意想不到的效果可能会突然出现在长远。
去病毒

丙型肝炎病毒©涂谨申卡瓦利尼/科学SOURCERNAi也呈现出承诺,在病毒感染的治疗。据保守估计,乙肝病毒(HBV)慢性感染全球超过3亿人,每年通过肝脏结疤(肝硬化),肝功能衰竭和肝癌造成至少78万。本病是可以治疗的,但是很多患者不标准治疗无反应与干扰素的药物,以及较新的口服核苷和核苷酸制剂能抑制乙肝病毒复制不治本,当病毒DNA序列已经成为融入病人的DNA中。

即使在目前的药物阻止乙肝病毒复制,“患者仍产生病毒表面抗原相当数量,且生产抗原确实挫伤免疫系统”箭头的刘易斯说。 “我们的想法是,如果你可以减少病毒抗原生产的水平,你就可以重新唤醒免疫系统,使其能够真正清除病毒的肝脏。我们认为,这将是利用RNA干扰的绝佳机会。“

今年三月,慈姑研究人员开始投药乙肝患者在第2阶段临床试验与公司的ARC-520的RNAi试剂。该药物结合的siRNA的两条序列具有箭头的所谓动态polyconjugate(DPC),它包括连同聚乙二醇链(PEG)是稳定的化合物在血液和靶向配体的聚合物主链,直接的治疗的细胞类型的兴趣。该公司希望在今年报告的研究结果。 Alnylam公司,悉尼,澳大利亚Benitec公司生物制药和Tekmira也纷纷效仿,准备好乙肝病毒药物的临床试验。

同时,Benitec公司走的是一条不同的RNAi方法来针对丙型肝炎病毒(HCV),其中感染全球超过1.5亿人,并可能导致肝功能衰竭,肝癌等危及生命的疾病。该公司的RNAi治疗,称为TT-034,使用腺相关病毒递送质粒携带3 shRNA的编码基因的宿主细胞核中。 (见图示)。该基因在宿主细胞中抑制hepatocytes.4今年五月,与HCV感染患者,谁没有以前治疗的反应生产丙型肝炎病毒的蛋白质,是第一个获得TT-的输液034的半阶段试验。共有14名患者将接受增加剂量,同时密切监测。

“这是第一次在短发夹RNA病毒载体编码,直接进入了病人,”大卫Suhy,高级副总裁,研究和开发,在Benitec公司说。 “你根本抢摊这些细胞内,并转录运行24小时。这是一个缓慢和去研究,因为它是nonwithdrawable;如果有严重的不良事件,我们将无法收回的化合物。“

从正面看,基因疗法的方法带有过电流丙肝的药物非常大的潜在优势,Suhy补充道。 “它不依赖于患者的依从性,采取每天的药片达到治疗效果。病人进来,他们被灌输,他们走了,把它完成,“这样做的好处可能是其中撒哈拉以南地区和东亚种群,其中有慢性HCV感染的发病率最高,且往往缺乏获得医疗保健尤为引人注目。

Tekmira的目标是另一个病毒攻击肝脏,并能更迅速地杀:埃博拉病毒。该公司的输注TKM-埃博拉病毒携号转网提供了针对多个站点的病毒基因组,抑制其replication.5的siRNAs“我们已经能够建立在动物模型中,我们可以救必死无疑下一个感染埃博拉病毒的动物,”穆雷说。

根据与美国国防部门的合同工作,Tekmira正在测试TKM-埃博拉病毒在FDA的“动物法则”,它允许在健康志愿者的安全测试,同时疗效探讨在动物模型。该公司公布良好的第一结果5月份第1阶段人体安全性试验,但FDA将审判搁置七月,由于给予最高剂量的志愿者中有问题的免疫反应。
与癌症干扰

从第一天开始,RNAi技术似乎提供了对癌症梦想的武器​​,特别是针对目前undruggable基因。 MYC基因,例如,长期以来被认为是一个重要的致癌基因,但“医药行业从未有过的工具来解决它,”Dicerna的Fambrough说。 “RNAi技术为我们提供了一种工具。”不像小分子药物和生物制剂,抑制突变的蛋白质,推动肿瘤的生长,RNAi药物可以阻止蛋白质的生产具有很大的特殊性。

不过,虽然一些早期的研究表明的承诺,没有任何药物已经进入三期临床试验。 2010年,箭头的CALAA-01是第一个显示出RNA干扰机理的证据在第1阶段试验检测对黑色素瘤治疗的效应的siRNA剂在人体内引起的。 CALAA-01,从含有环糊精的糖分子的聚合物建立起来的纳米颗粒,出现积聚在实体瘤和阻止其靶的翻译,RRM2,M2的亚基的酶核糖核苷酸还原酶,其在细胞division.6作用但问题随之而来,对治疗的效果及其副作用,箭头基于公司的DPC平台上有利于药物后悄然下降CALAA-01。

其他至少有三家公司正在谋求的RNAi接近但是现在治疗癌症,早期阶段的临床试验underway.7今年四月,Dicerna开始了它的DCR-MYC基因的第1阶段研究的基础上,公司的携号转网的技术,该公司被招募患者具有广泛的MYC驱动的实体瘤,以及多发性骨髓瘤和淋巴瘤。

    想知道的RNAi是否有效在人的日子背后us.David刘易斯,慈姑研究 - 大卫·路易斯,
    慈姑研究

     

今年五月,Tekmira拉开序幕半期试验用于治疗肝癌,其TKM-PLK1,抑制了Polo样激酶1(PLK1)的表达,在肿瘤的另一个目标确立。这项研究正在运行旁边正在进行二期试验为胃肠道神经内分泌肿瘤和肾上腺皮质癌。 “在所有这些疾病领域的,也有很差的,或在某些情况下,没有治疗的替代品,”穆雷强调。

Silenseed,位于耶路撒冷的一家制药公司,已成立的目光,甚至更高的癌基因K-ras基因“,几乎是圣杯”在癌症研究,公司CEO Amotz奢糜说。 30年来,人们一直在努力的目标突变的K-ras基因的小分子药物,但它是非常困难而不与其他蛋白质的干扰抑制,奢糜说。 Silenseed需要嵌入针对突变的K-ras基因在一个叫洛德(局部药物洗脱仪)毫米级矩阵的siRNA的方法。这些装填器,然后注射到肿瘤,其中所述siRNA的释放随时间。

Silenseed测试的概念,在第1阶段试验中治疗局部晚期胰腺癌,出了名的侵略性和难以治疗的疾病。注射用的内窥镜的活检针,装填器被设计来释放约一半的siRNA的在所述第一,二周,四个月交付他们的有效载荷的其余部分,然后溶解completely.8其中12名患者中,没有显示出肿瘤进展检查时8〜12周后,单次治疗,而试验参与者之间的中位总生存期为15个月左右,而大多数患者对疾病确诊后一年内死亡。该公司会跟进有三分之二期随机试验,预计到2015年年初推出。
新线索

研究更有针对性和更强大的RNAi试剂费用提前在学术界和制药实验室,具有一定的情况下,强调了对RNA的生物学暑期研讨会在麻省理工学院科赫研究所综合癌症研究在六月举行。麻省理工学院教授Sangheeta巴蒂亚,例如呈现在其中的siRNAs被包裹内部设计为穿透肿瘤和穿过细胞膜的肽在纳米复合结构的进步。在其第一化身,该纳米复合物不仅验证DNA的结合抑制剂4(ID4),为一种新的癌基因,但由撞倒其expression.9在另一实例中提高生存率在卵巢癌的小鼠模型,麻省理工学院副教授丹尼尔安德森描述的进展在产生杂乱组装岭澳核电站,纳入的PEG-脂质,脂肽,磷脂,胆固醇,和siRNA的,将提供100倍较早designs.10的效力

作为开发人员改进RNAi的定位和投放,安德森指出,siRNA的提供了机会,做模块化的药理学,药物设计在交换靶向配体针对特定的细胞类型,并针对特定的突变RNA序列。箭头,例如,正在研究的一个版本,它接受不同的靶向配体,并使用不同的化学反应,延长代理的循环时间,提高肝外达成目标的药物的能力的DPC纳米平台,刘易斯说。

“RNA干扰已经走出了实验领域进入临床境界,”刘易斯说。 “我们正处在一个非常令人兴奋的时间现在。这不是你经常有机会成为一个新兴的领域像这样,将真正在人类医学产生影响的一部分。“?

埃里克·本德尔是一家总部位于马萨诸塞州牛顿市的自由科学作家。
参考文献

    :A. Fire等人,“在秀丽隐杆线虫通过双链RNA的强效和特异性遗传干扰”,自然,391:806-11,1998。
    S.M。 ,Elbashir等人,“21个核苷酸的RNA双链体介导在培养的哺乳动物细胞中的RNA干扰”,自然,411:494-98,2001。
    K.杰拉德等人,RNA干扰药物的“关于前蛋白转化枯草杆菌蛋白酶/合成可欣类型9(PCSK9)和血清低密度脂蛋白胆固醇的健康志愿者的集聚效应:一项随机,单盲,安慰剂对照,第一阶段的试验中,“柳叶刀,383:60-68,2014年。
    H·丹尼斯等人,“在治疗处理的shRNA和siRNA目标精确切割深度测序的见解,”分子疗法的核酸,3:E145,2014年。
    T.W。 Geisbert等人,“保护暴露后对致命的埃博拉病毒挑战与RNA干扰非人类灵长类动物:概念验证研究,”柳叶刀,375:1896-905,2010。
    ME Davis等人,“RNAi在人类中的证据来自全身通过靶向的纳米颗粒,施用的siRNA”自然,464:1067年至1070年,2010。
    S.Y.吴等人,“RNA干扰疗法:下药的undruggable,”科学译医学,6:240ps7,2014年。
    。E. Zorde Khvalevsky等人,“突变的KRAS是胰腺癌成药目标,”美国国家科学院院刊,110:20723-28,2013。
    任华等人,“有针对性的肿瘤穿透siRNA的纳米复合物的资格认证的卵巢癌基因ID4,”科学译医学杂志,4:147ra112,2012。
    Y.董等人,“脂肽纳米颗粒的有效和选择性的siRNA递送在啮齿类和非人灵长类动物,”美国国家科学院院刊,111:3955-60,2014。

标签
RNA干扰,RNA干扰,疾病/医药,生物治疗和生物技术
已有 1 人评分现金 收起 理由
MP4 + 3

总评分: 现金 + 3   查看全部评分

Rank: 4

现金
486 元 
精华
帖子
432 
注册时间
2014-8-23 
最后登录
2018-8-27 
3
发表于 2014-9-4 14:08 |只看该作者
据说,rnai技术是哪个大公司,研究了十年。无果。然后放弃,低价转卖给箭头的。。。然后箭头再接下去研究的。。。
已有 1 人评分现金 收起 理由
StephenW + 10

总评分: 现金 + 10   查看全部评分

Rank: 4

现金
486 元 
精华
帖子
432 
注册时间
2014-8-23 
最后登录
2018-8-27 
4
发表于 2014-9-4 14:10 |只看该作者
说好像是rnai技术会引起肿瘤的风险?。。。不是很清楚了。。

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

5
发表于 2014-9-4 14:25 |只看该作者
kite2002005 发表于 2014-9-4 14:10
说好像是rnai技术会引起肿瘤的风险?。。。不是很清楚了。。

不是.
他们正在试图利用RNA干扰来治疗癌症.
Benitec的RNAi传递方法包括基因转移,因此需要加倍小心.

Rank: 6Rank: 6

现金
1075 元 
精华
帖子
1037 
注册时间
2011-10-9 
最后登录
2017-8-8 
6
发表于 2014-9-5 14:50 |只看该作者
回复 StephenW 的帖子

哦,是这么回事。

Rank: 9Rank: 9Rank: 9

现金
17064 元 
精华
12 
帖子
9399 
注册时间
2007-6-26 
最后登录
2017-11-25 

风雨同舟

7
发表于 2014-9-9 17:50 |只看该作者
好技术,正在前进中,期待
日行一善(百善孝为先)
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册

肝胆相照论坛

GMT+8, 2024-5-22 21:27 , Processed in 0.016163 second(s), 12 queries , Gzip On.

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.