15/10/02说明:此前论坛服务器频繁出错,现已更换服务器。今后论坛继续数据库备份,不备份上传附件。

肝胆相照论坛

 

 

肝胆相照论坛 论坛 学术讨论& HBV English N-糖基化突变表面主要亲水区晴有助于免疫逃逸 ...
查看: 468|回复: 4
go

N-糖基化突变表面主要亲水区晴有助于免疫逃逸 [复制链接]

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

1
发表于 2013-12-10 08:13 |只看该作者 |倒序浏览 |打印
N-Glycosylation Mutations within Hepatitis B Virus Surface Major Hydrophilic Region Contribute Mostly to Immune Escape

    De-Min Yu a,
    Xin-Hua Li a, f,
    Vannary Mom b,
    Zhong-Hua Lu d,
    Xiang-Wei Liao a,
    Yue Han a,
    Christian Pichoud b,
    Qi-Ming Gong a,
    Dong-hua Zhang a,
    Yan Zhang e,
    Paul Deny b,
    Fabien Zoulim b, c,
    Xin- XinZhang a, Corresponding author contact information, E-mail the corresponding author, E-mail the corresponding author

    a Department of Infectious Disease, Institute of Infectious and Respiratory Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
    b INSERM, U1052, 151 cours Albert Thomas, 69424 Lyon cedex 03, France
    c Lyon University and Hospices Civils de Lyon, Lyon, France
    d Wu Xi Hospital of Infectious Diseases, People’s Republic of China
    e Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, People’s Republic of China
    f The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China



Abstract
Background & aims

HBV immune escape represents a challenge to prevention, diagnosis, and treatment of hepatitis B. Here, we analyzed the molecular and clinical characteristics of HBV immune escape mutants in a Chinese cohort of chronically infected patients.
Methods

Two hundred sixteen patients with HBsAg and anti-HBs were studied, with one hundred eighty-two HBV carriers without anti-HBs as a control group. Recombinant HBsAg bearing the most frequent N-glycosylation mutations were expressed in CHO and Huh7 cells. After confirming N-glycosylation at the most frequent sites (129 and 131), together with inserted mutations, functional analysis were performed to study antigenicity and secretion capacity.
Results

One hundred twenty-three patients had the wild-type HBs gene sequence, 93 patients (43%) had mutants in the major hydrophilic region (MHR), and 47 of the 93 patients had additional N-glycosylation mutations, which were transmitted horizontally to at least 2 patients, one of whom was efficiently vaccinated. The frequency of N-glycosylation mutation in the case group was much higher than that of the control group (47/216 Vs 1/182).Compared with wild-type HBsAg, HBsAg mutants reacted weakly with Anti-HBs using a chemiluminescent microparticle enzyme immunoassay. Native gel analysis of secreted virion in supernatants of transfected Huh7 cells indicated that mutants had better virion enveloping and secretion capacity than wild-type HBV.
Conclusion

Our results suggest that specific HBsAg MHR N-glycosylation mutations are implicated in HBV immune escape in a high endemic area.

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

2
发表于 2013-12-10 08:15 |只看该作者
内乙型肝炎病毒的N-糖基化突变表面主要亲水区晴有助于免疫逃逸

    德闵迂 a,
    辛华丽 a,F ,
    Vannary Momb ,
    忠华路德,
    翔伟Liao a ,
    岳花,
    基督教Pichoud b ,
    齐明贡 a,
    冬华Zhang a ,
    严Zhang e ,
    保罗Deny b ,
    法比安斯基Zoulimb , C,
    鑫XinZhang a ,通讯作者的联系信息,电子邮件通讯作者,电子邮件通讯作者

    传染病,传染病和呼吸系统疾病研究所,瑞金医院,上海交通大学医学院,上海,中华人民共和国的一个部
    b INSERM , U1052 , 151康斯阿尔伯特·托马斯, 69424 Cedex的里昂03 ,法国
    Ç里昂大学和收容所Civils里昂,里昂,法国
    ð吴曦传染病医院,中华人民共和国
    的系统生物医学研究院,上海中心系统生物医学(上银) ,上海交通大学,中华人民共和国教育部重点实验室Ë部
    f显示第三附属医院,中山大学大学,广州,中华人民共和国


摘要
背景及目的

乙型肝炎病毒免疫逃逸是一个挑战,以预防,诊断和治疗乙型肝炎在这里,我们分析了在慢性感染患者的中国世代乙肝免疫逃逸突变体的分子和临床特点。
方法

两百16例HBsAg和抗-HBs进行了研究,用182 HBV携带者不抗-HBs作为对照组。重组HBsAg轴承最频繁的N-糖基化突变的表达在CHO和Huh7细胞。在确认的N-糖基化是最常见位点( 129和131 ) ,连同插入的突变,进行了功能分析,来研究抗原性和分泌的能力。
结果

一百23例有野生型HBs抗体基因序列, 93名患者( 43%)的主要亲水区(MHR )具有突变体,并在93例患者中47具有额外的N -糖基化突变,这被水平地传送到至少有2例患者,其中一人被有效地接种疫苗。的情况下,组中的N-糖基化突变的频率明显低于对照组( 47/216对1/ 182)高得多,与野生型乙肝表面抗原,乙肝表面抗原突变体的弱反应与抗-HBs采用化学发光微粒子酶相比免疫。在转染的Huh7细胞的上清液中分泌的病毒体的天然凝胶分析表明,突变体具有更好的病毒粒子包膜和分泌能力比野生型HBV 。
结论

我们的研究结果表明,特定的HBsAg MHR的N-糖基化突变牵连的乙肝病毒免疫逃逸在高流行区。

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

3
发表于 2013-12-10 08:32 |只看该作者
Patients who recover from acute hepatitis B clear surface antigen (HBsAg) from serum and anti-HBs, becomes detectable as hallmark of HBV immune control. However, anti-HBs appears weeks after HBsAg clearance and neutralizing antibodies are unlikely to contribute to early viral control but to prevent viral spread from cells that remain infected after hepatitis resolution [1]. This notion is supported by the evidence that chimpanzees resolving hepatitis B are protected from viral rechallenge [2]. Similarly, in non infected individuals an adequate anti-HBs production (>10mUI/ml) indicate a protective immunity after vaccination [1]. Several evidences suggest that anti-HBs is present in chronic HBsAg carriers also, but not detected because hidden in circulating immune-complexes [3]. Thus the simultaneous detection of HBsAg/anti-HBs (HBsAg/anti-HBs-codetection) represents an atypical serologic profile puzzling virologists and clinicians since the late '70ies [3-5]. Initially, it was explained by heterologous antibodies against subtypes different from the infecting HBV subtype as HBsAg subtypes d/y infections could associate with y/d anti-HBs subtypes [6]. The hypothesis of primary infection with 2 subtypes followed by clearance of only one
of them was contradicted by the animal model where humoral response against the a determinant of HBsAg prevented the re-infection with different HBV subtypes [3]. In addition, ay anti-HBs was found in HBsAg carriers from Japan, where this subtype is uncommon [7]. Therefore, the hypothesis of a mixed infection was dismissed in favour of clonal selection of antibody diversity[3]. The high similarity between 2 HBV serotypes (i.e HBsAg /ad and HBsAg/ay) could induce the clonal expansion not only of high-titre, high-affinity anti-a and anti-d, but also lower-titre, low affinity heterotypic anti-y [3-4]. Nevertheless, the question remains why only a minority of HBsAg carriers exhibit this condition. After the introduction of molecular biology techniques the characterization of viral quasispecies in clinical settings of HBV infections despite vaccination or HBIg treatment showed that HBsAg/anti-HBs-co-detection was associated with viral strains
carrying HBsAg mutations that escaped the anti-HBs neutralization [8-9]. These findings raise the question whether genetic heterogeneity of HBV and particularly of the S gene could be present in other HBsAg/anti-HBs carriers also.
Serum HBsAg results from one open reading frame providing 3 carboxy-terminal colinear proteins of different length (small, medium and large, SHBs, MHBs, LHBs). In addition to the S gene MHBs contains pre-S2 sequence (55 aa) and LHBs preS1 (108/119 aa depending on subtype) and preS2 sequences. PreS1 and PreS2 and the aa 100-169 domain of SHBs (Major Hydrophylic Region, MHR) are exposed on viral particles and highly immunogenic. The studies of HBsAg variants focused mainly on SHBs, because it is expressed at the highest levels, predominates in both virions and subviral particles and contains within MHR the “a determinant” (aa 124–147), main target of neutralizing antibodies. Two major loops are present in the “a” determinant (the 1st at aa 124-137; the 2nd at aa 139-147), defined by multiple potential disulfide bridges, between aa 139/147 (or 149) and 121/124; conserved cysteines at 124, 137, 139 and 149 are essential for conformation and antigenicity [9]. MHR is the principal anti-HBs binding site after natural infection, immunisation and HBIg prophylaxis, although areas up and downstream may be also
important in neutralisation. Initially characterized vaccine and HBIg escape mutants showed
glycine to arginine substitutions at position 145 (G145R); later other mutations between 120 and 208 were described in patients with active or passive immune-prophylaxis or CHB [10].
Overall, in both Western and Asian cohorts a significantly higher S gene variability, particularly of MHR with higher number of aa substitutions was found in HBsAg/anti-HBs positive patients than in controls [11-16]. Two French studies showed in the same patients a significantly higher number of aa changes in the "s" gene (aa substitution/100 aa: 4.55 vs 1.66), even more evident in MHR (5.71-4.68 vs 1.43-2.07) and "a" determinant (9.52-11.00 vs 2.43-2.48). Aa substitutions were significantly more frequent at positions 120,126, 129,130, 144 and 165; G145R/T was the most frequent [11-12]. These findings suggested that emergence of "a" determinant variants could favour viral escape from immune neutralization. Most of Asian studies confirmed the European findings except for a higher prevalence of aa changes in the 1st loop (aa 124-137) of "a" determinant than in the 2nd (aa137-145) [13-15]. When HBV genotype C infected individuals were analysed the classic G145R substitution was significantly less frequent, with prevalent mutations at aa 126, 129, 130, 131,133,134 confirming a major influence of genotype on selection of viral
quasispecies [13-15]. However, a potential role of immune suppression and antiviral therapy in European patients can not be rule out. Interestingly, some studies showed a significant variability of S gene at its CTL epitope (aa 87-95) that might contribute to HBV neutralization failure [13].
The major mechanism hypothesised for HBsAg/anti-HBs-co-detection remained the change in primary sequence of "a" determinant that alters its antigenic structure making the anti-HBs response less effective. Nevertheless, the real impact of many mutations on HBsAg antigenicity has yet to be determined. Yu D-M et al addressed this issue investigating the biological features of 3 MHR mutants, identified among 216 Chinese HBsAg/Anti-HBs carriers [16]. Authors confirmed a significantly higher heterogeneity of "s" gene in HBsAg/anti-HBs patients as compared to 182 controls, particularly within MHR (mutation prevalence 43.1% vs 15.5%). Interestingly, 22% (47 of 216) of HBsAg/Anti-HBs carriers harbored new N-glycosylation sites in the MHR as compared to only 1 of 182 (0.5%) controls. The 8 potential N-glycosylation sites were all located within or before the 1st loop of HBsAg (aa substitutions 113,114,116,123,129,130,131, with an additional
"N-X-T/S" motif by insertion between 114-115). They confirmed clustered mutations in 129,130 and 131 and selected mutations in 129 and 131, together with the 3 aa insertions functionally studied. They showed firstly by PNGaseF treatment and site direct mutagenesis, that these mutations produced new N-Glycosilation sites, then by deglycosylation experiments that the anti-HBs binding capacity of the 3 mutated proteins was several times lower. Finally,transcomplentation experiments with replication competent/secretion defective HBV plasmid and mutated HBV-env constructs showed an increase secretion of virions. These findings contribute to a better understanding of the underlying biological mechanisms of HBsAg/anti-HBs-co-detection and confirm a major role of the interplay between virus and immune system. On the one hand the HBV replication pathway leads to mutations in the S gene prompting the selection of variants with better fitness once the specific immune response has developed [16]. On the other hand when both HBsAg and anti-HBs are detected in highly viremic, HBeAg positive, immune tolerant carriersthe alternative possibility that the heterogeneity of the antibodies production could overcome the variability of the virus still holds true, as suggested by Zhang et al [17]. However, this is a classical
chicken and egg question since a single nucleotide change is enough to induce aa substitutions at position 120, 126 and 160 shifting subtype d to y, i to t and w to r [5].
In addition, Yu D-M et al demonstrate the infectivity of 129 mutant in one responder to HBV
vaccine suggesting that individuals harbouring these mutated HBV strains could represent a risky reservoir for the spread of HBV infection, even in vaccinated individuals [16]. However, such an event appear to occur only in specific clinical settings such as immune-compromised individuals who deserve a special attention and careful monitoring. Another case was a HBsAg/HBeAg positive immunetolerant patient, with initially undetectable anti-HBs, who turned positive at the time of transition to immune elimination phase, when the 131 mutant became detectable. According to Authors the mutant was horizontally transmitted at that time, but, alternatively, we may speculate that the variant was selected and emerged when the specific adaptive anti-HBV immune response was mounted [16]. This finding further supports the view that immune selection plays a pivotal role
and suggests that the prevalence of HBsAg/anti-HBs-co-detection should increase in CHB
patients. Actually, its reported prevalence is extremely variable, ranging from 2.5% to over 30% [5,11-17]; the changes of diagnostic criteria overtime could explain at least in part such variability, but patient heterogeneity seems a major cause. Accordingly, the HBsAg/anti-HBs prevalence is lower (2.5-5%) in HBsAg carriers identified by population screening, but increases up to 30% in CHB patients. Shields at al showed that 63% of CHB patients were HBsAg/anti-HBs positive as compared to 14% of asymptomatic carriers [18]. Furthermore, liver disease was shown to progress more frequently to HCC in Korean HBsAg/anti-HBs positive CHB patients who had also a higher prevalence of pre-S mutations (42.4% vs 20.4%) [19-20]. Yu et al found a higher prevalence of N-glycosylation mutation in HCC patients as compared to controls (53% vs 0%, p<0.001).
Overall these findings suggest that HBsAg/anti-HBs-co-detection is linked to a long lasting immune clearance phase that favours the selection of highly variable viral quasispecies not only in the S gene, but also in regions of the genome with relevant oncogenic potential.
In conclusion the possible clinical implications of HBsAg/anti-HBs-co-detection are different
according to the immune competence of the chronic HBsAg carrier as indicated in table n.1.
However, not all studies confirm the correlation between HBsAg/anti-HBs-co-detection and
severity of liver disease, thus its clinical significance remains to be better characterized in larger prospective cohort studies.

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

4
发表于 2013-12-10 08:33 |只看该作者
谁从急性乙型肝炎清晰表面抗原(HBsAg)从血清和抗恢复患者
HBs阳性,成为检测为乙肝病毒免疫控制的标志。然而,抗-HBs出现周
后HBsAg清除和中和抗体是不太可能有助于早期病毒控制
但要防止病毒蔓延,从分辨率肝炎后仍然感染的细胞[ 1 ] 。这个概念
所支持的证据表明,黑猩猩解决乙肝免受病毒
激发试验[ 2 ] 。同样,在非感染个体足够的抗-HBs生产( > 10
mUI的/毫升)表示在接种后的保护性免疫[1]。几个证据表明,反
HBs抗体存在于慢性HBsAg携带者还可以,但没有检测到,因为隐藏在循环
免疫复合物[3]。因此,同时检测乙肝表面抗原/抗-HBs (乙肝表面抗原/抗-HBs - codetection )的
代表一个非典型血清学档后期以来,令人费解的病毒学家和临床医师
'70ies [ 3-5 ] 。最初,它是由异源抗体亚型的不同解释
在感染乙肝病毒亚型的HBsAg亚型D / Y感染可能为Y / D抗-HBs关联
亚型[6]。原发感染与2亚型随后只有一个间隙的假说
他们是矛盾的动物模型,其中对一个决定因素体液反应
的HBsAg的防止​​再感染具有不同的HBV亚型[3]。此外,唉抗-HBs是
在日本,在那里这亚型是罕见的HBsAg携带者发现[ 7 ] 。因此,本
混合感染的假说被驳回赞成克隆选择抗体多样性的
[3]。 2 HBV血清型(即乙肝表面抗原/广告与HBsAg / AY )之间的相似度较高可诱导
克隆扩增不仅高滴度,高亲和力的抗-A和抗-D ,但是也低滴度, lowaffinity
异型抗- Y [ 3-4 ] 。尽管如此,问题仍然乙肝表面抗原为什么只有少数
运营商出现此情况。引入分子生物学技术之后的
尽管接种疫苗或乙肝病毒感染的临床环境中病毒准种的表征
乙肝免疫球蛋白治疗表明,乙肝表面抗原/抗-HBs ,联合检测是与病毒株相关
携带乙肝表面抗原突变,躲过了抗-HBs中和[ 8-9 ] 。这些发现提出了
问题HBV和特别是S基因的遗传异质性是否可能存在于
其他的HBsAg /抗-HBs运营商也。
血清HBsAg从提供3羧基端共线蛋白1的开放阅读框效果
不同长度(小型,中型和大型,单版电脑, MHBs , LHBs的) 。除了S基因MHBs
含有前S2序列( 55 AA)和LHBs的前S1 (108/ 119个氨基酸视亚型)和
前S2序列。前S1和前S2和单版电脑的AA 100-169域(主要亲水
区域, MHR)暴露于病毒颗粒和高免疫原性。乙肝表面抗原的研究
变异主要集中在单版电脑,因为它表达了在最高水平,在占主导地位
这两个病毒颗粒和亚病毒颗粒,并在MHR包含了“一个决定” ( AA 124-147 ) ,
中和抗体的主要目标。两个主要的回路中存在的“a”决定簇(在第一
在AA 124-137 ;第二为AA 139-147 ) ,由多个潜在的二硫键定义, AA之间
一百四十七分之一百三十九(或149 )和124分之121 ,在124 , 137 , 139和149保守的半胱氨酸是必不可少的
构象和抗原性[ 9 ] 。 MHR是主要的抗-HBs结合位点后自然
感染,免疫和乙肝免疫球蛋白预防,但区域和下游可能也
在中和重要。初步定性疫苗和乙肝免疫球蛋白逃避突变体表现
甘氨酸为精氨酸替换为145位( G145R ) ,后来其他突变之间的120和
208是在患者的主动或被动免疫预防或慢性乙型肝炎[ 10 ]中描述。
总体而言,在西方和亚洲的同伙一个显著更高的S基因变异特别的,
MHR具有较高的编号AA换人被发现的HBsAg /抗-HBs阳性患者比
对照组[ 11〜16] 。两个法国研究表明在同一患者的一些显著更高
在“S”基因( AA substitution/100 AA : 4.55对1.66 )氨基酸的变化,甚至在MHR更加明显
( 5.71-4.68与1.43-2.07 )和“a”决定( 9.52-11.00与,2.43-2 .48 ) 。 AA替换为
显著更加频繁,持仓120,126 , 129,130 ​​, 144和165 ; G145R / T是最
频繁[ 11-12 ] 。这些研究结果建议, “ a”决定簇变异体可能出现
有利于病毒逃避免疫中和。大多数亚洲研究证实了欧洲
除“一”更高的AA发病率的变化在第一循环(AA 124-137 )的调查结果
行列式比2 ( aa137 -145 ) [ 13〜15] 。当HBV C基因型感染的个体分别为
分析了经典G145R取代是显著较不频繁,与流行突变
氨基酸126 , 129 ,130, 131133134上选择的病毒基因型,确认的主要影响
准种[ 13〜15] 。然而,免疫抑制和抗病毒治疗的潜在作用,在
欧洲患者不能被排除。有趣的是,一些研究显示了显著的变化
S基因在其CTL表位(氨基酸87-95) ,可能导致乙肝病毒的中和失败[ 13] 。
科学家的假设为乙肝表面抗原/抗-HBs ,联合检测的主要机制仍然在变化
的“a”决定,改变其抗原结构使得抗-HBs一级序列
反应效果较差。尽管如此,许多突变对HBsAg抗原性的实际影响
目前尚未确定。羽马克等人解决了这个问题调查的生物学特性
3 MHR突变体,确定其中216中国的HBsAg /抗-HBs载体[ 16 ] 。作者证实
“S”基因中的HBsAg /抗-HBs患者的显著更高​​的异质性相比, 182
控制,特别是在最大心率(突变发生率43.1 %比15.5 % ) 。有趣的是, 22 %(47
乙型肝炎病毒表面抗原/抗-HBs载体216 )窝藏在MHR新的N -糖基化位点,较
仅182个(0.5%)对照1 。 8个潜在的N -糖基化位点均位于或
HBsAg的第一循环之前(AA换人113,114,116,123,129,130,131 ,另外还有
通过114-115之间插入“ N-X - T / S ”序) 。他们证实集群突变129,130
和131和129和131选择的突变,连同3氨基酸的插入功能
研究。他们发现首先通过PNGaseF处理和定点突变,这些
突变产生的新的N-糖基化位点,然后通过去糖基化实验中,反
HBs抗体结合的3突变蛋白的能力较低几次。最后,
transcomplentation实验与复制能力/分泌缺陷的乙肝病毒和质粒
突变的HBV-包膜构建体显示出病毒粒子的增加分泌。这些发现做出贡献
更好地理解的HBsAg /抗-HBs -联合检测的潜在的生物学机制
并确认病毒和免疫系统之间的相互作用的一个重要的角色。一方面的
HBV的复制途径导致突变的S基因提示的变体的选择与
一旦特异性免疫反应增强体质已经发展[ 16 ] 。在另一方面,当
HBsAg和抗-HBs在高度病毒血症, HBeAg阳性,免疫耐受的载体检测
替代的可能性,即抗体生产的异质性可能克服
病毒的变异仍然是成立的,所建议的Zhang等[ 17 ] 。然而,这是一个经典
由于单个核苷酸改变鸡和蛋的问题就足以引起氨基酸替换在
位置120 , 126和160转向D亚型为y , i到t和w与r [ 5 ] 。
此外,羽马克等人证明129突变体的感染性于一体应答对乙肝病毒
疫苗,这表明个人携带这些突变的HBV毒株可能是一个危险的
水库HBV感染的传播,甚至在接种的个体[ 16 ] 。然而,这样的
事件似乎只发生在特定临床情况,如免疫能力较差的人
谁值得特别关注和认真监督。另一种情况是乙肝表面抗原/ e抗原
积极immunetolerant病人,而初步检测不到抗-HBs ,谁在当时转正
过渡到免疫清除期,此时131突变显现出来的。根据
作者的突变体被水平地在那个时候传送的,但是,可替代地,我们可以推测
该变量被选中,当出现特定的自适应抗HBV免疫应答
被安装[ 16 ] 。这一发现进一步支持了免疫选择起着举足轻重的作用的看法
并且建议的HBsAg /抗-HBs -联合检测的患病率应在CHB增加
患者。事实上,它的患病率报道是极其多变,从2.5 %到30 %
[ 5,11-17 ]的诊断标准加班的变化可以解释至少在部分这样的变化,
但患者的异质性似乎是一个重要原因。因此,乙肝表面抗原/抗-HBs流行率是
在确定人群筛查HBsAg携带者低( 2.5-5 % ) ,但升幅达30%
慢性乙肝患者。希尔兹等人发现, CHB患者63 %为HBsAg /抗-HBs阳性为
相比无症状携带者的14% [18]。此外,肝病被证明
在韩国的HBsAg /抗-HBs阳性CHB患者谁也更加频繁进展为HCC的一个
的前S基因突变发生率较高( 42.4 %比20.4 % ) [ 19-20 ] 。 Yu等人发现的发病率较高
的N-糖基化突变的HCC患者比对照组( 53 %比10% , P <0.001) 。
总之,这些发现表明,乙肝表面抗原/抗-HBs - 共 - 检测被链接到一个持久的免疫
一种有利于高度可变病毒准种的选择清除期,不仅在S
基因,而且还与有关的致癌潜力的基因组区域。
总之乙肝表面抗原/抗-HBs -CO检测的可能的临床意义是不同的
根据慢性HBsAg携带者的如表N.1指示的免疫能力。
然而,并非所有的研究证实的HBsAg /抗-HBs - 共 - 检测和之间的相关性
肝脏疾病的严重程度,因此其临床意义仍有较大的更好表征
前瞻性队列研究。

Rank: 8Rank: 8

现金
62111 元 
精华
26 
帖子
30441 
注册时间
2009-10-5 
最后登录
2022-12-28 

才高八斗

5
发表于 2013-12-10 08:37 |只看该作者
上面的帖子是一个非常技术性的论文来解释为什么有些患者同时HBsAg和抗-HBs出现.
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册

肝胆相照论坛

GMT+8, 2024-5-4 08:20 , Processed in 0.015042 second(s), 11 queries , Gzip On.

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.