肝胆相照论坛

标题: 慢性乙型肝炎的自然进程的代谢表征 [打印本页]

作者: StephenW    时间: 2016-7-5 15:52     标题: 慢性乙型肝炎的自然进程的代谢表征

Metabolic characterization of the natural progression of chronic hepatitis B

    Johannes C. Schoeman, Jun Hou, Amy C. Harms, Rob J. Vreeken, Ruud Berger, Thomas Hankemeier† and Andre Boonstra†Email author

†Contributed equally
Genome Medicine20168:64

DOI: 10.1186/s13073-016-0318-8

©  The Author(s). 2016

Received: 17 February 2016

Accepted: 17 May 2016

Published: 10 June 2016
Abstract
Background

Worldwide, over 350 million people are chronically infected with the hepatitis B virus (HBV) and are at increased risk of developing progressive liver diseases. The confinement of HBV replication to the liver, which also acts as the central hub for metabolic and nutritional regulation, emphasizes the interlinked nature of host metabolism and the disease. Still, the metabolic processes operational during the distinct clinical phases of a chronic HBV infection—immune tolerant, immune active, inactive carrier, and HBeAg-negative hepatitis phases—remains unexplored.
Methods

To investigate this, we conducted a targeted metabolomics approach on serum to determine the metabolic progression over the clinical phases of chronic HBV infection, using patient samples grouped based on their HBV DNA, alanine aminotransferase, and HBeAg serum levels.
Results

Our data illustrate the strength of metabolomics to provide insight into the metabolic dysregulation experienced during chronic HBV. The immune tolerant phase is characterized by the speculated viral hijacking of the glycerol-3-phosphate–NADH shuttle, explaining the reduced glycerophospholipid and increased plasmalogen species, indicating a strong link to HBV replication. The persisting impairment of the choline glycerophospholipids, even during the inactive carrier phase with minimal HBV activity, alludes to possible metabolic imprinting effects. The progression of chronic HBV is associated with increased concentrations of very long chain triglycerides together with citrulline and ornithine, reflective of a dysregulated urea cycle peaking in the HBV envelope antigen-negative phase.
Conclusions

The work presented here will aid in future studies to (i) validate and understand the implication of these metabolic changes using a thorough systems biology approach, (ii) monitor and predict disease severity, as well as (iii) determine the therapeutic value of the glycerol-3-phosphate–NADH shuttle.
Keywords
Metabolomics Chronic hepatitis B Liver Viral hijacking Clinical phases


作者: StephenW    时间: 2016-7-5 15:52

慢性乙型肝炎的自然进程的代谢表征

    约翰内斯·斯库曼,君侯,艾米C.危害,罗布J. Vreeken,范尼伯杰,托马斯Hankemeier†和安德烈Boonstra†电子邮件作者

†同等贡献
基因组Medicine20168:64

DOI:10.1186 / s13073-016-0318-8

©作者(S)。 2016年

收稿日期:2016年2月17日

接受日期:2016年5月17日

发布时间:2016年6月10日
抽象
背景

在世界范围内,超过3.5亿人慢性感染了乙肝病毒(HBV),并且在显影进行性肝疾病的风险增加。 HBV复制到肝脏,这还可以作为代谢和营养调控中心毂约束,强调宿主代谢和疾病的相互联系的性质。尽管如此,在代谢过程中一种慢性HBV感染免疫耐受,免疫活跃,不活跃的载体的不同的临床阶段的运营和HBeAg阴性乙肝阶段,仍然未知。
方法

为了研究这个问题,我们进行了血清靶向代谢的方法来确定在慢性HBV感染的临床阶段的代谢的进展,利用基于其的HBV DNA,谷丙转氨酶,和HBeAg血清分组的患者样品。
结果

我们的数据表明代谢的实力为客户提供深入了解慢性HBV期间所经历的代谢失调。的免疫耐受期的特征在于甘油-3-磷酸NADH梭的推测病毒劫持,解释了降低甘油和增加的缩醛物种,说明强连结HBV复制。胆碱甘油的持续损害,即使在最小的乙肝病毒活性的惰性载体阶段,暗示可能代谢印迹效果。慢性乙肝的进展是非常长链甘油三酯的浓度增加与瓜氨酸和鸟在一起,反射在乙肝包膜抗原阴性阶段失调的尿素循环调峰有关。
结论

这里介绍将在未来的研究有助于与(i)验证和理解的使用彻底系统生物学方法这些代谢变化的含意的工作,(ⅱ)监测和预测疾病的严重程度,以及(ⅲ)确定的治疗价值甘油-3-磷酸NADH穿梭。
关键词
代谢组学慢性乙肝病毒劫持临床阶段
作者: StephenW    时间: 2016-7-5 15:54

Discussion

The present study is the first targeted and biology driven metabolomics profiling of chronic HBV infection, characterizing the natural progression through its distinct clinical phases. With the liver being the central organ in nutritional regulation and metabolism, it is not surprising that chronic HBV infections have been shown to induce multiple metabolic alterations in lipid metabolism of the host [15, 16, 17, 18, 19, 20, 21]. However, these studies have not addressed and positioned metabolic changes in relation to the progression of chronic HBV disease.
The IT phase is clinically characterized by high levels of HBV replication and minimal hepatic injury. We now show that this phase exhibits major lipid alterations, with increased free fatty acids, acyl-carnitines, and plasmalogens concurrent with decreased triglyceride, phospholipid (ester-linked), and sphingomyelin levels (Fig. 4). The glycolysis intermediate dihydroxyacetone phosphate (DHAP) is the precursor metabolite via glycerol-3-phosphate (G3P) for the de novo glycerophospholipids and triglyceride synthesis pathways. Alternatively, DHAP can also be transported to the peroxisomes where it is the precursor for the synthesis of vinyl ether-linked plasmalogen phospholipids. The DHAP to G3P reaction is catalyzed by glycerol-3-phosphate dehydrogenase (GPDH) and is known as the G3P–NADH shuttle, simultaneously converting NADH to NAD+ necessary during the glycolysis cycle. Our results suggest that HBV hijacks this G3P–NADH shuttle, resulting in reduced levels of glycerophospholipids, lysoglycerophospholipids, triglycerides, and sphingomyelins. The secretion of glycerophospholipids from the liver is the main contributor to their serum levels, substantiating the hepatic metabolic fingerprint and the link to HBV activity [36]. Plasmalogen phosphatidylcholine has been identified as the preferred lipid species in the viral envelope and surface antigen particles of HBV, accounting for approximately 60 % of total lipid content [37]. Additionally, Li et al. [16] reported the upregulation of mRNA transcripts in the phosphatidylcholine biosynthesis pathway during HBV infection in HepG2 cell lines and its necessity for HBV replication. Collectively, the observed increase in choline plasmalogen levels reveals the metabolic engineering capacity of HBV and supports our hypothesis of HBV hijacking of the G3P–NADH shuttle. Importantly, this altered lipid profile of down-regulated phospholipids and increased plasmalogens persists during the progression of chronic HBV infection (Fig 3a, b), even during the IC phase where virtually no HBV replication is taking place, implying a HBV-induced metabolic imprinting effect. Although other reasons could be used to explain metabolic observations (such as an altered metabolic flux or consumption rate of metabolites and even diet), the use of pattern analyses and the progressive nature of our clinical phase-defined chronic HBV samples provide concrete evidence to illustrate an altered metabolic state.
https://static-content.springer. ... 6_318_Fig4_HTML.gif
Fig. 4

Metabolic alterations identified in the IT phase of chronic HBV. Increased levels of DHAP-derived plasmalogen phospholipid species, free fatty acids, and acyl carnitines were found. A significant decrease in glycerophospholipids, triglycerides, and sphingomyelins was found, suggesting the HBV hijacking of the cytosolic glycerol-3-phosphate dehydrogenase (GPDH) enzyme, favoring the synthesis of plasmalogen lipid species. Detected metabolic species are highlighted in red with the arrow indicating its trend. DHAP dihydroxyacetone phosphate, G3P glycerol-3-phosphate, LPA lysophosphatidic acid, PA phosphatidic acid, DG diacylglycerol, PE phosphatidylethanolamine, PC phosphatidylcholine, LPE lysophosphatidylethanolamine, LPC lysophosphatidylcholine, TG triglyceride, FFA free fatty acids, pPE plasmalogen phosphatidylethanolamine, pPC plasmalogen phosphatidylcholine, pLPE plasmalogen lysophosphatidylethanolamine, pLPC plasmalogen lysophosphatidylcholine, GAPDH glyceraldehyde-3-phosphate dehydrogenase, TPI triosephosphate isomerase, cGPDH cytosolic glycerol-3-phosphate dehydrogenase, mGPDH mitochondrial glycerol-3-phosphate dehydrogenase

During the natural progression of chronic HBV, we measured increased choline, methionine, and very long acyl chain triglyceride levels together with reduced phosphatidylcholine and lysophosphatidylcholine levels, indicating a perturbed choline metabolism. Dietary choline and methionine depravation is strongly linked to the development of steatosis, non-alcoholic fatty liver disease, cirrhosis, and HCC [38, 39, 40, 41]. During conditions of choline restriction, the reduced levels of phosphatidylcholine, a critical component of the very low density lipoprotein particle, impair hepatic lipoprotein synthesis and result in the accumulation of free triglycerides within hepatocytes [42, 43]. Decreased phosphatidylcholine species in the presence of high choline levels during the IA, IC, and ENEG phases support the permanent G3P–NADH shuttle hijacking hypothesis, impairing lipoprotein synthesis during chronic HBV, while also explaining the accumulation of triglycerides. Even with decreased levels of long chain free fatty acids in the IC phase, no attenuation of long chain triglyceride levels was observed in this phase. The stable elevated levels of betaine, sarcosine, and methionine indicate enhanced choline catabolism, while increased levels of methionine are also reflective of hepatic injury [32, 33]. Previous studies demonstrated that host factors were responsible for the development of steatosis rather than viral factors [44, 45]. Our metabolomics data suggest that initiation of steatosis may be a consequence of HBV hijacking of the host’s glycerophopholipid metabolism, as liver fat content closely correlates with serum triglyceride levels [46, 47].
Another metabolic pathway with increased activity reflective of the natural progression of chronic HBV infection is composed of urea cycle intermediates: enhanced levels of citrulline and ornithine were detected in the IC and ENEG phases, respectively. The urea cycle is predominantly active in hepatocytes and responsible for detoxifying ammonia. Moreover, it has an intimate relationship with the aspartate–malate NADH shuttle functioning across the mitochondrial membrane. One could speculate that the HBV hijacking of the G3P–NADH shuttle, as explained above, will affect the redox status (NADH/NAD+) of the cell and cause an up-regulation/stress of the malate–aspartate NADH/NAD+ shuttle to rectify this imbalance (Fig. 5). The mitochondrial transporter citrin (AGC), encoded by the gene SLC25A13, is responsible for the transport of aspartate and glutamate during aspartate–malate NADH shuttling. Cytosolic aspartate binds to citrulline to form the urea cycle intermediate argininosuccinate, which can be converted to arginine, which in turn is converted to ornithine with the release of urea. We detected increased levels of citrulline, ornithine and glutamate, all implicating impaired aspartate transport, and may reflect reduced integrity and functioning of the mitochondrial citrin transporter. A dysregulated urea cycle precedes the histological manifestations of irreversible liver damage [48], and thus might be a prediction marker for chronic HBV progression and severity.
https://static-content.springer. ... 6_318_Fig5_HTML.gif
Fig. 5

Cellular NADH shuttles and the urea cycle. The interplay between a the reduced G3P–NADH shuttle and b a stressed aspartate–malate NADH shuttle and its influence on c the urea cycle. The aspartate transporter AGC (aka citrin) facilitates the transport of aspartate across the mitochondrial membrane to the cytosol where it binds to citrulline in the urea cycle to help detoxify ammonium. Ineffective aspartate transport will lead to the accumulation of glutamate, citrulline, and ornithine identified in the IC and ENEG clinical phases of HBV infection

Collectively, the data presented here comprise the first metabolic study on the natural progression of chronic HBV infection using patient samples. We found impaired choline glycerophospholipid metabolism across the four chronic HBV clinical phases, together with increasing triglyceride and urea cycle intermediate levels as a liver metabolic fingerprint of the progression of chronic HBV infection. This metabolic fingerprint relates to HBV’s hijacking of the G3P–NADH shuttle, a key player in the plasmalogen, choline, and glycerophospholipid metabolic pathways, and its potential as a therapeutic target deserves further investigation. Elegant work done by Zeissig et al. [34] demonstrated the role of lysophospholipids as endogenous antigenic lipid species able to illicit protective immunological responses, which enhanced HBV clearance during acute infection. This may imply that, in addition to redirecting host lipid metabolism to produce the plasmalogens, hijacking of glycerophospholipid metabolism during acute HBV infection could act as a switch to determine HBV clearance or persistence. Furthermore, the diabetes drug metformin, which inhibits mitochondrial GPDH [49], part of the G3P–NADH shuttle, was found to inhibit HBV protein production and replication [50]. These findings substantiate the therapeutic value of the G3P–NADH shuttle in chronic HBV infection.
Conclusions

The present study provides many insights and leads to design follow-up studies and, at the same time, highlights the need for a systems biology approach to better understand chronic HBV infection. We identified liver-related metabolic and injury perturbations, which reflect the natural progression of the disease. The altered glycerophospholipid metabolism in the IT phase attributed to the HBV hijacking of the G3P–NADH shuttle has an intimate relationship with the persistent lipid dysregulation observed in the IA, IC, and ENEG clinical phases. Increased levels of the very long chain triglycerides in the IA phase and urea cycle intermediates in the IC phase highlight the risk for developing secondary liver complications during chronic HBV infection. These metabolites might prove useful as markers of disease progression and severity.
Abbreviations

ALT, alanine aminotransferase; DHAP, dihydroxyacetone phosphate; ENEG, HBeAg-negative; G3P, glycerol-3-phosphate; GPDH, glycerol-3-phosphate dehydrogenase; HBeAg, HBV envelope antigen; HBsAg, HBV surface antigen; HBV, hepatitis B virus; HC, healthy control; HCC, hepatocellular carcinoma; IA, immune active; IC, inactive carrier; IDO, indoleamine 2,3-dioxygenase; IT, immune tolerant; LC–MS, liquid chromatography–mass spectrometry; QC, quality control.

作者: StephenW    时间: 2016-7-5 15:56

讨论

本研究是慢性HBV感染的第一目标和生物学驱动的代谢组学分析,表征通过其不同的临床阶段自然发展。随着肝脏是营养调节和代谢的中心器官,它是不奇怪的慢性HBV感染已被证实可导致多种代谢改变在主机的脂代谢[15,16,17,18,19,20,21] 。然而,这些研究都没有解决与定位有关的慢性HBV疾病进展代谢变化。
在IT阶段的临床特征是高水平的HBV复制和最小的肝损伤。我们现在表明,该阶段的展品主要脂质改变,具有增加的游离脂肪酸,酰基肉碱和plasmalogens并发降低甘油三酯,磷脂(酯 - 连接的),和鞘磷脂水平(图4)。糖酵解中间磷酸二羟丙酮(DHAP)可以从头甘油和甘油三酯的合成途径通过甘油-3-磷酸(G3P)的前体的代谢物。可替代地,DHAP也可以输送到它是乙烯基醚连接缩醛磷脂的合成前体的过氧化物酶体。的DHAP至G3P反应通过甘油-3-磷酸脱氢酶(GPDH)催化和被称为G3P-NADH梭,所述糖酵解周期期间同时转换的NADH至NAD +的必要。我们的结果表明HBV劫持此G3P-NADH的穿梭,从而降低甘油,lysoglycerophospholipids,甘油三酯和鞘磷脂的水平。从肝脏甘油磷脂的分泌是主要贡献者,其血清水平,证实肝代谢指纹,并链接HBV活性[36]。缩醛磷脂已经被确定为乙型肝炎病毒的病毒包膜和表面抗原颗粒的优选的脂质物种,占总脂质含量[37]的大约60%。此外,Li等。 [16]报道HBV感染的HepG2细胞系及其对HBV复制必要性过程中的磷脂酰胆碱生物合成途径的mRNA转录的上调。总的来说,胆碱水平缩醛观察到的增多反映出乙肝病毒的代谢工程能力,并支持我们的G3P-NADH穿梭HBV劫持的假说。重要的是,下调的磷脂和增加plasmalogens的这种改变脂质分布慢性HBV感染的进展(图3a中,b)中,即使在那里几乎没有HBV复制正在发生将IC相期间仍然存在,这意味着一个HBV诱发的代谢印迹影响。虽然其他的原因,可以用来解释代谢观测(例如改变的代谢通量或代谢物的消耗率,甚至饮食),使用模式分析,我们的临床阶段定义的慢性HBV样本的渐进性提供具体证据来说明改变的代谢状态。

图。 4

代谢变化在慢性乙肝的IT阶段确定。 DHAP衍生缩醛磷脂种类,游离脂肪酸和酰基肉碱的水平增加被发现。在甘油磷脂,甘油三酯和鞘磷脂一个显著下降被发现,表明胞质甘油-3-磷酸脱氢酶(GPDH)酶的HBV劫持,有利于缩醛脂质种类的合成。检测到的代谢种以红色突出显示的箭头指示其趋势。 DHAP磷酸二羟丙酮,G3P甘油-3-磷酸,LPA溶血磷脂酸,PA磷脂酸,DG甘油二酯,PE磷脂酰乙醇胺,PC磷脂酰胆碱,LPE溶血磷脂酰乙醇胺,LPC溶血磷脂酰胆碱,TG甘油三酯,游离脂肪酸游离脂肪酸,PPE缩醛磷脂,PPC缩醛磷脂酰胆碱, pLPE缩醛溶血磷脂酰乙醇胺,pLPC的缩醛溶血磷脂酰胆碱,GAPDH甘油醛-3-磷酸脱氢酶,TPI磷酸丙糖异构酶,cGPDH胞质甘油-3-磷酸脱氢酶,mGPDH线粒体甘油-3-磷酸脱氢酶

在慢性HBV的自然进程,我们测量具有减少的磷脂酰胆碱和溶血磷脂酰胆碱含量增高胆碱,蛋氨酸,和非常长酰基链甘油三酯水平一起,表示一个扰动胆碱代谢。膳食胆碱和蛋氨酸恶化密切相关,脂肪肝,非酒精性脂肪肝,肝硬化的发展,肝癌[38,39,40,41]。期间胆碱限制,磷脂酰胆碱的水平降低的条件下,极低密度脂蛋白粒子的一个关键组成部分,损害肝脂蛋白合成,并导致游离甘油三酯的肝细胞内的积累[42,43]。降低磷脂物种中高胆碱水平的过程中IA,IC和ENEG相的存在支持永久G3P-NADH的穿梭劫持假说,慢性HBV期间损害脂蛋白合成,同时也解释甘油三酯的积累。即使在IC相下降的长链游离脂肪酸的水平,在此阶段没有观察到长链甘油三酯水平的衰减。甜菜碱,肌氨酸和甲硫氨酸的稳定水平升高表明增强胆碱分解代谢,而甲硫氨酸的增加水平也反映肝损伤[32,33]。以往的研究表明,宿主因素负责脂肪变性的发展,而不是病毒因素[44,45]。我们的代谢组学数据表明脂肪变性的启动可以是主机的glycerophopholipid代谢HBV劫持的后果,如肝脏脂肪含量与血清甘油三酯水平[46,47]密切相关。
具有增加的活性的反射慢性HBV感染的自然进程的另一代谢途径是由尿素循环中间体的:在IC和ENEG相分别检测增强瓜氨酸和鸟氨酸的水平。尿素循环是在肝细胞中主要是积极和负责解毒的氨。此外,它具有与整个线粒体膜天门冬氨酸 - 苹果酸NADH穿梭运行的亲密关系。人们可以推测G3P-NADH梭的HBV劫持,如上所述,会影响细胞的氧化还原状态(NADH / NAD +),并导致苹果酸盐 - 天冬氨酸的NADH / NAD +的穿梭的上调/应力纠正这种不平衡(图5)。线粒体转运柠檬素(AGC),由该基因编码的SLC25A13,负责天冬氨酸和谷氨酸的天冬氨酸苹果酸盐的NADH往复期间输送。胞浆天冬氨酸结合瓜氨酸以形成尿素循环中间体精氨琥珀酸,它可以被转换为精氨酸,这反过来又被转换成鸟氨酸与尿素的释放。我们发现增加的瓜氨酸,鸟氨酸和谷氨酸,所有牵连受损的天门冬氨酸的运输水平,可能反映了线粒体西特林转运减少完整性和功能。失调的尿素循环之前的不可逆转的肝损伤[48]组织学表现,因而可能是慢性HBV进展和严重程度的预测指标。

图。五

蜂窝NADH班车和尿素循环。一个减少G3P-NADH穿梭和B之间一个强调天冬氨酸,苹果酸NADH班车和C上的尿素循环影响的相互作用。天冬氨酸转运的AGC(又名柠檬素)有助于天冬氨酸的跨线粒体膜的运输到其结合瓜氨酸是尿素循环,以帮助解毒铵细胞质。无效天冬氨酸运输将导致谷氨酸,瓜氨酸的积累,和鸟氨酸在HBV感染的集成电路和ENEG临床阶段确定

总的来说,这里给出的数据包括使用患者样本慢性HBV感染的自然进程的第一个代谢研究。我们发现受损胆碱甘油磷脂代谢在四个慢性HBV的临床阶段,随着甘油三酯和尿素循环中间体水平慢性HBV感染的进展的肝脏代谢指纹在一起。这种代谢指纹涉及G3P-NADH穿梭的乙肝病毒的劫持,在缩醛,胆碱的关键角色,和甘油的代谢途径,其电势作为治疗靶值得进一步研究。通过Zeissig等人完成的做工考究。 [34]证​​实溶血磷脂作为能够非法保护的免疫反应,其中急性感染期间增强病毒清除内源抗原的脂质物种中的作用。这可能意味着,除了重定向主机脂质代谢产生plasmalogens,甘油代谢劫持急性HBV感染期间可以作为一个开关,以确定病毒清除或持久性。此外,糖尿病药物二甲双胍,其抑制线粒体GPDH [49],所述G3P-NADH梭的一部分,被认为抑制HBV蛋白的生产和复制[50]。这些结果证实在慢性HBV感染的G3P-NADH穿梭的治疗价值。
结论

本研究提供了许多的见解,并导致设计后续研究,并在同时,突出了一个系统生物学方法,以便更好地了解慢性HBV感染的需要。我们发现肝脏相关的代谢和伤害的扰动,这反映疾病的自然进程。在归因于G3P-NADH穿梭HBV劫持的IT阶段的改变甘油磷脂代谢与在IA,IC和ENEG临床观察阶段持续脂质失调的亲密关系。在IC阶段IA相和尿素循环中间体的非常长链甘油三酯水平的增加突出慢性HBV感染期间显影继发性并发症的风险。这些代谢物可能被证明为疾病进展和严重程度的标志物是有用的。
缩略语

ALT,谷丙转氨酶; DHAP,磷酸二羟丙酮; ENEG,HBeAg阴性; G3P,甘油-3-磷酸酯; GPDH,甘油3-磷酸脱氢酶;大三阳,乙肝病毒包膜抗原;乙肝表面抗原,乙肝病毒表面抗原;乙肝病毒,B型肝炎病毒; HC,健康的控制;肝癌,肝细胞癌; IA,免疫活性; IC,不活动的载体; IDO,吲哚胺2,3双加氧酶; IT,免疫耐受; LC-MS,液相色谱 - 质谱法; QC,质量控制。
作者: StephenW    时间: 2016-7-5 15:56

http://genomemedicine.biomedcent ... ?platform=hootsuite




欢迎光临 肝胆相照论坛 (http://hbvhbv.info/forum/) Powered by Discuz! X1.5