肝胆相照论坛

标题: 科学家»新闻与意见» 对抗病毒的RNAi [打印本页]

作者: StephenW    时间: 2013-10-12 20:00     标题: 科学家»新闻与意见» 对抗病毒的RNAi

The Scientist »
        News & Opinion »
   
Fighting Viruses with RNAi

The long-debated issue of whether mammals can use RNA interference as an antiviral defense mechanism is finally put to rest.

By Ruth Williams | October 10, 2013


Plants, fungi, and invertebrates use RNA interference (RNAi) to fend off invading viruses. Mammals, on the other hand, are known to contain RNAi machinery, but researchers have never been able to prove that they use the molecular obstruction strategy for fighting viruses. Two papers published in Science today (October 10) provide the long-elusive evidence that indeed they do.

“There was controversy in the field as to whether or not RNAi ever acts as an antiviral response in mammals, and I think what is clear from these papers is that it does, in at least some laboratory conditions,” said Christopher Sullivan, a professor of molecular genetics and microbiology at the University of Texas in Austin, who was not involved in the work. “Now the argument will shift to when or if this matters in the wild,” he said.

When a single-stranded RNA virus infects a cell, its first actions are to hi-jack the protein production machinery and make essential viral proteins such as replicase. This enzyme makes a complimentary strand to the viruses’ genetic material, which is then used as a template to generate multiple copies of the virus. With each round of replication the viral genome thus temporarily becomes double-stranded. And it is this unusual two-ply RNA molecule that triggers the host to initiate RNAi—an ancient mechanism that chops the double-stranded RNA into 21- to 23-nucleotide-long fragments called siRNAs, which target and destroy the virus’s single-stranded genome.

Over the course of evolution, however, the same machinery has been adopted for processing non-coding RNAs of the host into microRNAs that target and suppress host messenger RNAs. That is, in addition to its role in virus combat, RNAi machinery is used as a gene-regulatory mechanism.

Since RNAi’s virus-fighting ability was first discovered in plants and insects, scientists have been hunting for its equivalent in mammals. But despite repeated attempts they could only find evidence for RNAi’s gene-regulatory role.

“A lot of people have tried—ramming their heads against the wall time and time again—to discover this [in mammals] . . . and didn’t find it,” said  Sullivan. In fact the results were “strikingly negative,” he said. However, added Eric Miska, a professor of molecular genetics at the Gurdon Institute in Cambridge, UK, who also was not involved in the work, “lack of evidence is not evidence for the lack of this pathway.”

There are a number of reasons why an antiviral RNAi pathway may have been elusive in mammalian cells, explained Olivier Voinnet, a professor at the Swiss Federal Institute of Technology in Zurich who led one of the new studies. First, mammals have evolved an alternative virus-combating innate immune response, involving proteins called interferons. Second, many viruses carry RNAi-suppressing proteins, which may have hidden the process. Third, researchers may simply have been looking in the wrong cells.

Multipotent cells, such as embryonic stem cells, do not produce or respond to interferon—possibly because the interferon response often leads to cell death, and multipotent stem cells, which are essential for replenishing tissues, might be considered more valuable than their differentiated counterparts, said Voinnet.  Whatever the reason, Voinnet thought that these interferon-less cells might expose a virus-fighting RNAi process hidden in other cell types. Sure enough, infection of mouse embryonic stem cells with encephalomyocarditis virus led to the production of siRNAs characteristic of RNAi. Furthermore, infection of embryonic stem cells with Nodamura virus that lacked its B2 protein—a suppressor of RNAi—also gave rise to siRNAs.

“For the first time we’ve seen real siRNAs being produced in mammalian cells,” said Voinnet excitedly. “All we’d seen before were microRNAs.”

Why had no one thought to look in stem cells previously? “The majority of our cells are not pluripotent and the majority of cells that first come in contact with viruses, then, are not pluripotent,” said Sullivan. Thus people had assumed stem cells were not an important site of virus-fighting action. Additionally, in plants and insects, RNAi is clearly an antiviral response in differentiated cells, he said.

It might not be only pluripotent cells where antiviral RNAi is active, however. Shou-wei Ding, a professor and plant pathologist at the University of California, Riverside, who led the second study, found that deleting the B2 gene in Nodavirus was sufficient to produce siRNAs in baby hamster kidney cells and newborn mice infected with the virus.

These reports of infection-induced siRNA production provide the first proof that antiviral RNAi is possible in mammalian cells and live mice. How commonly the mechanism is used by mammals, however, remains to be seen.

“[The work] challenges the field to now . . . look for [natural] examples where this really matters,” Miska said.

Y. Li et al., “RNA interference functions as an antiviral immunity mechanism in mammals,” Science, 342: 231-234, 2013.

P. V. Maillard et al., “Antiviral RNA interference in mammalian cells,” Science, 342: 235-238, 2013.



作者: StephenW    时间: 2013-10-12 20:01

哺乳动物是否可以利用RNA干扰作为一种抗病毒防御机制是长期争论的问题终于入土为安。

由露丝·威廉姆斯| 2013年10月10日


植物,真菌和无脊椎动物使用RNA干扰(RNAi)技术,以抵御入侵的病毒。另一方面,哺乳动物,被称为包含RNAi机制,但研究人员一直无法证明他们使用对抗病毒的分子阻挠策略。两篇论文发表在“科学”今日( 10月10日)提供长期难以捉摸的证据表明,他们确实这样做。

“在该领域的争议与否的RNAi曾经作为哺乳动物的抗病毒反应,而且我认为从这些论文中有什么是清楚的是,它至少在某些实验室条件下,克里斯托弗·沙利文说:”教授分子遗传学和微生物在奥斯汀的得克萨斯大学,谁没有参与这项工作。 “现在的争论将转移到何时或在野外如果这事, ”他说。

当的单链RNA病毒感染细胞时,它的第一个行动是hi-jack位置的蛋白质的生产机器,并进行必要的病毒蛋白质,例如复制酶。这种酶使病毒的遗传物质,然后将其用作模板来生成多个病毒副本免费链。随着每一轮的复制病毒的基因组,从而暂时成为双链。而且是这个不寻常的双股RNA的分子,即触发主机来发起RNA干扰 - 一个古老的机制,猪排的双链RNA进入21 - 23 -核苷酸的长片段名为siRNA的,哪些目标和摧毁病毒的单双链基因组中。

然而,在进化过程中,相同的机器已经被采纳处理成小分子RNA ,目标和抑制宿主的信使RNA的非编码RNA的主机。也就是说,除了它的作用在病毒作战,作为RNAi机制的基因调控机制。

由于最早发现于植物和昆虫RNA干扰病毒的战斗能力,科学家们一直在狩猎其相当于在哺乳动物。但是,尽管多次尝试,他们只能找到的RNAi的基因调控作用的证据。

“很多人都试过捣他们的头靠墙一次再发现哺乳动物[ ]。 。 。并没有发现它, “沙利文说。事实上结果是“惊人的负, ”他说。 “然而,埃里克Miska ,分子遗传学教授格登学院在剑桥,英国,谁也不会参与工作, “缺乏证据并不缺乏这一途径的证据。 ”

教授在瑞士联邦理工学院苏黎世带领一个新的研究解释说, Olivier Voinnet的,还有一些抗病毒RNAi途径的原因可能是难以捉摸的哺乳动物细胞中。首先,哺乳动物已经逐渐形成了一种替代打击病毒先天免疫反应,涉及蛋白质称为干扰素。其次,许多病毒携带的RNAi抑制蛋白,这可能是隐藏的过程。第三,研究人员可能根本就一直在寻找在错误的细胞。

多能细胞,如胚胎干细胞,不产生或响应干扰素可能因为干扰素反应往往会导致细胞的死亡,并且,这是必不可少的补充组织的多能干细胞,可能会被认为更有价值的比其分化,说Voinnet 。不管什么原因, Voinnet认为这些细胞干扰素,可能会暴露隐藏在其他类型的细胞病毒的战斗RNAi过程。果然,与脑心肌炎病毒的小鼠胚胎干细胞的感染导致生产的siRNA的RNAi的特征。此外,胚胎干细胞缺乏B2蛋白的RNAi也抑制器与Nodamura病毒感染引起的siRNAs 。

“这是第一次,我们已经看到了真正的siRNA在哺乳动物细胞中产生, Voinnet兴奋地说。 ” “我们之前见过的microRNA 。 ”

为什么没有人想看看以前在干细胞? , “沙利文说: ”我们的细胞大部分是多能干细胞,首先是在与病毒接触的大部分,那么,是不是多能干。因此,人们曾以为干细胞是不是病毒的战斗行动的一个重要场所。此外,在植物和昆虫, RNAi是明显分化细胞的抗病毒反应,他说。

它可能不是唯一的多能干细胞抗病毒RNAi是积极的,但是。寿伟鼎,滨江,加州大学教授和植物病理学家谁带领第二项研究中,发现,删除B2基因诺达是足以产生的siRNA在幼仓鼠肾细胞和新生小鼠的病毒感染。

这些报告的感染诱发siRNA的生产提供抗病毒RNAi是第一次证明,在哺乳动物细胞和活体小鼠。常见的机制用于哺乳动物,但是,仍然有待观察。

[工作]挑战领域到现在。 。 。 [自然]的例子,这真的很重要,“ , , Miska说。

Y. Li等人, “ RNA干扰功能的抗病毒免疫机制在哺乳动物中, ”科学“ , 342 :231-234 , 2013 。

光伏拉德等人,“抗病毒RNA干扰技术在哺乳动物细胞中, ”科学“ , 342 :235-238 , 2013 。
作者: 重肝过后    时间: 2013-10-13 20:34



果壳主题站
< 环球科技观光团
重见天日的抗病毒武器

Calo2013-10-12 12:00
病毒是人类健康的一大威胁,包括艾滋病在内的许多病毒病目前还没有有效的治疗方法。而现在,一种存在于我们身体内的抗病毒武器,也许能够帮助我们击退病毒的侵袭。
人类与致命病毒之间的搏斗是一场没有硝烟的战争。现在,我们终于又向战争的胜利迈出重要一步。昨日(10月11日)发表在《科学》上的两篇文章共同表明,哺乳动物能够利用RNA干扰(RNAi)抗击体内的病毒。
RNAi是一种在生物中普遍存在的现象,克雷格·梅洛(Craig Mello)和安德鲁·法厄(Andrew Fire)因为发现这一现象而获得了2006年的诺贝尔生理学奖。RNAi在植物和果蝇、线虫等动物中是重要的抗病毒武器。然而,在包括人类在内的哺乳动物中,我们对RNAi在免疫方面的作用却知之甚少,研究数据也相对匮乏。
RNAi能通过小干扰RNA(siRNA)等分子实现对特定基因的表达抑制。当病毒的双链RNA(dsRNA)进入细胞后,会被细胞内一种叫Dicer的核酸酶切割成短的siRNA,这些siRNA能够与RNA诱导沉默复合物(RISC)结合并变为单链。随后,RISC带着单链RNA去寻找与之互补的病毒mRNA,并促使这些mRNA降解,从而阻止病毒基因表达。图片来源:nobelprize.org
但现在,在哺乳动物中,RNAi也作为抗病毒利器重见天日。“我们在哺乳动物中发现了一种新的免疫机制。对这项机制的探究也许能帮我们发现很多可作为药物靶标的人类基因。”加州大学河滨分校整合基因组生物学研究所的教授丁守伟在接受果壳网采访时介绍道。RNAi与我们身体内的其他抗病毒机制相比,“最重要的区别在于RNAi能利用来源于病毒的小RNA分子,特异性地摧毁并清除入侵的病毒。”丁守伟解释道,RNAi也许是最重要的防御机制。
此前,科学家们一直无法证明哺乳动物能用RNAi途径来杀死病毒。而研究植物、线虫和果蝇逾20年的丁守伟意识到了问题的关键:在长期的演化过程中,病毒形成了能对宿主抗病毒机制产生抑制作用的蛋白。正是这种抑制蛋白“从中作梗”,人们才没有发现哺乳动物中RNAi的抗病毒功能。
丁守伟以前在研究黄瓜花叶病毒和兽棚病毒时分别发现了RNAi抑制蛋白2b和B2,他对病毒攻击与细胞防御之间的演化过程有着深刻的理解。他指出:“要证明RNAi的抗病毒功能在哺乳动物中也存在,我们必须检测到病毒特异性的siRNA,以及细胞通过RNAi特异性地清除病毒的过程。”
实验中,丁的团队利用野田病毒(Nodomura virus)侵染小鼠活体,与他们合作的沃因奈特团队则用脑心肌炎病毒(Encephalomyocarditis virus)侵染培养的小鼠胚胎干细胞。小鼠幼崽在感染病毒之后很快就全都死去;而当病毒中的抑制蛋白被去除后,小鼠产生的siRNA大军对病毒进行了攻击,并最终获得胜利生存下来。“在阻止病毒RNAi抑制蛋白的表达之后,我们在培养的细胞和活鼠体内都观察到了上述两个指标。”至此,研究者终于证明了RNAi在哺乳动物中也具有抗病毒功能。“我们之所以能设计这些实验,得益于从果蝇和秀丽隐杆线虫身上获得的启示。”丁守伟说。
丁守伟利用小鼠模型对RNAi抗病毒机制进行研究。图片来源:S.W Ding and O. Voinnet
这项成果如同为在与病毒肉搏的人们掘出了一柄利剑。“目前我们对人类抗病毒免疫机制的理解仍有缺陷。这种新的抗病毒机制可能正是空缺的其中一环。”丁守伟说:“病毒对哺乳动物的侵染依赖于它们对RNAi的抑制作用,如果我们用药物阻碍这种抑制作用,RNAi抗病毒机制就能发挥作用——这为病毒病的治疗提供了新的思路。”他补充:“此前要鉴别病毒上的RNAi抑制蛋白是困难的。但现在我们发现了这一机制,鉴别工作应该会变得简单些。”
研究的脚步还在继续。“我们还需要确定侵染人体的病毒会否引发RNAi抗病毒过程并对该过程产生抑制。此外,我们也计划利用这个新的防御机制,开发新的病毒病疫苗。”丁守伟说。

信息来源:EurekAlert!
文章题图:shutterstock友情提供


作者: 9病成医    时间: 2013-10-13 22:19

谢谢楼上二位的分享。




欢迎光临 肝胆相照论坛 (http://hbvhbv.info/forum/) Powered by Discuz! X1.5